# nLab rational model of mapping space

Contents

### Context

#### Rational homotopy theory

and

rational homotopy theory

# Contents

## Idea

Given two topological spaces $X$, $Y$ one may ask for the rational homotopy type of their mapping space $Maps(X,Y)$. Under good conditions this is a nilpotent space of finite type and hence admits a Sullivan model from which its rationalized homotopy groups and its rational cohomology groups may be read off.

## Examples

### Rational Cohomotopy spaces

We discuss results on the rational homotopy type of spaces of maps into an n-sphere, hence rational Cohomotopy cocycle spaces.

###### Proposition

(rational homotopy type of space of maps from n-sphere to itself)

Let $n \in \mathbb{N}$ be a natural number and $f\colon S^n \to S^n$ a continuous function from the n-sphere to itself. Then the connected component $Maps_f\big( S^n, S^n\big)$ of the space of maps which contains this map has the following rational homotopy type:

(1)$Maps_f\big( S^n, S^n\big) \;\simeq_{\mathbb{Q}}\; \left\{ \array{ S^n \times S^{n-1} &\vert& n\,\text{even}\,, deg(f) = 0 \\ S^{2n-1} &\vert& n \, \text{even}\,, deg(f) \neq 0 \\ S^n &\vert& n\, \text{odd} } \right.$

where $deg(f)$ is the degree of $f$.

Moreover, under the canonical morphism expressing the canonical action of the special orthogonal group $SO(n+1)$ on $S^n = S\big( \mathbb{R}^{n+1}\big)$ (regarded as the unit sphere in $(n+1)$-dimensional Cartesian space) we have that on ordinary homology

$\array{ H_\bullet\Big( SO\big( n+ 1 \big) \Big) &\longrightarrow& H_\bullet\Big( Maps_{f = id}\big( S^n, S^n \big) \Big) }$

the generator in $\left\{ \array{ H_{2n+1}\big( SO(n+1), \mathbb{Q} \big) \simeq \mathbb{Q} &\vert& n\, \text{even} \\ H_{n}\big( SO(n+1), \mathbb{Q} \big) \simeq \mathbb{Q} &\vert& n\, \text{odd} } \right.$ maps to the fundamental class of the respective spheres in (1), all other generators mapping to zero.

See at Sullivan model of a spherical fibration for more on this.

###### Proposition

(rational cohomology of iterated loop space of the 2k-sphere)

Let

$1 \leq D \lt n = 2k \in \mathbb{N}$

(hence two positive natural numbers, one of them required to be even and the other required to be smaller than the first) and consider the D-fold loop space $\Omega^D S^n$ of the n-sphere.

Its rational cohomology ring is the free graded-commutative algebra over $\mathbb{Q}$ on one generator $e_{n-D}$ of degree $n - D$ and one generator $a_{2n - D - 1}$ of degree $2n - D - 1$:

$H^\bullet \big( \Omega^D S^n , \mathbb{Q} \big) \;\simeq\; \mathbb{Q}\big[ \omega_{n - D}, \omega_{2n - 1 - D} \big] \,.$

For the edge case $\Omega^D S^D$ the above formula does not apply, since $\Omega^{D-1} S^D$ is not simply connected (its fundamental group is $\pi_1\big( \Omega^{D-1}S^D \big) = \pi_0 \big(\Omega^D S^D\big) = \pi_D(S^D) = \mathbb{Z}$, the 0th stable homotopy group of spheres).

But:

###### Example

The rational model for $\Omega^D S^D$ follows from Prop. by realizing the pointed mapping space as the homotopy fiber of the evaluation map from the free mapping space:

$\array{ \mathllap{ \Omega^D S^D \simeq \;} Maps^{\ast/\!}\big( S^D, S^D\big) \\ \big\downarrow^{\mathrlap{fib(ev_\ast)}} \\ Maps(S^D, S^D) \\ \big\downarrow^{\mathrlap{ev_\ast}} \\ S^D }$

This yields for instance the following examples.

In odd dimensions:

In even dimensions:

(In the following $h_{\mathbb{K}}$ denotes the Hopf fibration of the division algebra $\mathbb{K}$, hence $h_{\mathbb{C}}$ denotes the complex Hopf fibration and $h_{\mathbb{H}}$ the quaternionic Hopf fibration.)

### General

Discussion of Sullivan models and models via L-∞ algebra for spaces of maps:

### Rational Cohomotopy cocycle spaces

Discussion of rational Cohomotopy cocycle spaces:

• Jesper Møller, Martin Raussen, Rational Homotopy of Spaces of Maps Into Spheres and Complex Projective Spaces, Transactions of the American Mathematical Society Vol. 292, No. 2 (Dec., 1985), pp. 721-732 (jstor:2000242)

• J.-B. Gatsinzi, Rational Gottlieb Group of Function Spacesof Maps into an Even Sphere, International Journal of Algebra, Vol. 6, 2012, no. 9, 427 - 432 (pdf)

### Spectral sequence for rational homotopy of mapping spaces

A spectral sequence computing the rational homotopy of mapping spaces:

• Samuel B. Smith, A based Federer spectral sequence and the rational homotopy of function spaces, Manuscripta Math (1997) 93: 59 (doi:10.1007/BF02677458)

based on

• Herbert Federer, A Study of Function Spaces by Spectral Sequences, Transactions of the American Mathematical Society Vol. 82, No. 2 (Jul., 1956), pp. 340-361 (jstor:1993052)