nLab scissors congruence




Two polygons P,PP,P' in the Euclidean plane have the same area iff they are scissors congruent in the sense that they can be subdivided into finitely many pieces such that the pieces of PP are congruent to the pieces of PP'.

Hilbert’s third problem (see Hilbert's problems) was to decide whether the analogue of this elementary fact holds for polyhedra in 3-dimensional space. Dehn solved this problem using what is now called the Dehn invariant. In modern language, it assigns to a polyhedron PP an element in R ZR/Z\mathbf{R}\otimes_{\mathbf{Z}} \mathbf{R}/\mathbf{Z}. If both the Dehn invariant and volume of two (3-dimensional finite) polyhedra in Euclidean space are equal then they are scissors congruent.

The generalized Hilbert’s third problem asks whether two finite nn-polytopes in Euclidean, spherical or hyperbolic nn-space must be scissors equivalent if they have the same volume and generalized invariants.

The scissors congruence group 𝒫(X,G)\mathcal{P}(X,G) where GG is a subgroup of the group of isometries of XX, is the free abelian group on symbols [P][P], for all polytopes in XX modulo the relations

(i) [P][P][P][P]-[P']-[P''] when P=PPP = P'\coprod P'',

(ii) [gP][P][g P]-[P].

In the book

Dupont explains the relations of dilogarithms, Reidemeister torsion, Dehn invariant (which is from 1900) and their role in understanding the 19th century scissors congruence…The subject is very active now. After physicist Anatole Kirillov found the quantum dilogarithm and L. D. Fadeeev and Kashaev published a paper about it (and discovered the pentagon relation), this became an important topic in quantization (Fadeev’s modular double, quantization of Teichmuller spaces, work of A. Fock, L. Takhdajan, Aldrovandi etc.) of hyperbolic spaces and generally the hyperbolic geometry and with relations, together with classical dilogarithm to many other subjects (e.g. to the work of Reznikov and theory or regulators, specially Borel regulator in higher algebraic K-theory, important for study of motives (Goncharov et al.) and, as W. Nahm shown, also relevant for understanding some phenomena in CFT).


  • C. H. Sah, Hilbert’s third problem: scissors congruence, Research Notes in Mathematics 33, Pitman 1979.
  • Inna Zakharevich, Scissors congruence as K-theory, arxiv/1101.3833
  • wikipedia Hilbert's third problem
  • J.-P. Sydler, Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidean à trois dimensions, Comment. Math. Helv. 40, 43-80, 1965.

Last revised on July 31, 2021 at 06:27:43. See the history of this page for a list of all contributions to it.