physics, mathematical physics, philosophy of physics
theory (physics), model (physics)
experiment, measurement, computable physics
Axiomatizations
Tools
Structural phenomena
Types of quantum field thories
(…)
The original articles on the Heisenberg spin chain model:
Werner Heisenberg: Zur Theorie des Ferromagnetismus, Zeitschrift für Physik 49 (1928) 619–636 (1928) [doi:10.1007/BF01328601]
Hans Bethe: Zur Theorie der Metalle, Zeitschrift für Physik 71 (1931) 205 [doi:10.1007/BF01341708]
Extension to the AKLT model:
Observation of the “Haldan gap phase” in antiferromagnetic integer Heisenberg spin chains (and relation to the SO(3) sigma-model):
F. Duncan M. Haldane: Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State, Phys. Rev. Lett. 50 (1983) 1153 [doi:10.1103/PhysRevLett.50.1153]
Duncan Haldane, Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the nonlinear sigma model, Physics Letters A 93 9 (1983) 464-468 [doi:10.1016/0375-9601(83)90631-X]
Duncan Haldane: Ground State Properties of Antiferromagnetic Chains with Unrestricted Spin: Integer Spin Chains as Realisations of the Non-Linear Sigma Model [arXiv:1612.00076]
T. Jolicoeur, Olivier Golinelli: Physics of integer-spin antiferromagnetic chains: Haldane gaps and edge states, Comptes Rendus Chimie 22 (2019) 445-451 [doi:10.1016/j.crci.2019.05.005, arXiv:1906.12207]
Discussion of symmetry protected topological phases:
Review:
Andreas Schadschneider, Götz S. Uhrig: Part II of: Strongly Correlated Systems in Solid State Physics, lecture notes (2004) [pdf, pdf]
Ingmar Saberi, An introduction to spin systems for mathematicians [arXiv:1801.07270]
Amanda Young: Quantum Spin Systems [arXiv:2308.07848, spire:2688309]
See also:
Wikipedia: Quantum Heisenberg model
Wikipedia: AKLT model
Relation to tensor networks:
Claim of supersymmetric spin chains carrying braid group representations (“anyons”):
On topological phases (i.e. gapped ground states) of spin chains:
On simulation of quantum spin chains on quantum computers:
A holographic CMT model for spin chains:
Identifiication of spin chain dynamics in the action of the dilatation operator in super Yang-Mills theory, specifically D=4 N=4 super Yang-Mills theory, on single trace operators/BMN operators and correspondence to Green-Schwarz superstrings on AdS5 under the AdS-CFT correspondence:
J. A. Minahan, Konstantin Zarembo, The Bethe-Ansatz for Super Yang-Mills, JHEP 0303 (2003) 013 (arXiv:hep-th/0212208)
Niklas Beisert, Matthias Staudacher, The SYM Integrable Super Spin Chain,
Nucl. Phys. B670:439-463, 2003 (arXiv:hep-th/0307042)
Niklas Beisert, Sergey Frolov, Matthias Staudacher, Arkady Tseytlin, Precision Spectroscopy of AdS/CFT, JHEP 0310:037, 2003 (arXiv:hep-th/0308117)
Review includes
A. V. Belitsky, Volker Braun, A. S. Gorsky, G. P. Korchemsky, Integrability in QCD and beyond, Int. J. Mod. Phys. A19:4715-4788, 2004 (arXiv:hep-th/0407232)
Niklas Beisert, Luis Alday, Radu Roiban, Sakura Schafer-Nameki, Matthias Staudacher, Alessandro Torrielli, Arkady Tseytlin, et. al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99, 3 (2012) (arXiv:1012.3982)
For D3-D7 brane bound states and D3-D5 brane bound states:
See also:
Taro Kimura, Rui-Dong Zhu, Bethe/Gauge Correspondence for / Gauge Theories and Open Spin Chains, JHEP 2021 227 (2021) [arXiv:2012.14197, doi:10.1007/JHEP03(2021)227]
Ziwei Wang, Rui-Dong Zhu, Bethe/Gauge Correspondence for Spin Chains with Integrable Boundaries [arXiv:2401.00764]
Analogous spin chain aspects claimed to appear in D=6 N=(2,0) SCFT:
Florent Baume, Jonathan J. Heckman, Craig Lawrie, 6D SCFTs, 4D SCFTs, Conformal Matter, and Spin Chains, Nuclear Physics B 967 (2021) 115401 [doi:10.1016/j.nuclphysb.2021.115401, arXiv:2007.07262]
Jonathan J. Heckman, Qubit construction in 6D SCFTs, Physics Letters B 811 (2020) 135891 [doi:10.1016/j.physletb.2020.135891, arXiv:2007.08545]
Last revised on September 4, 2025 at 10:18:07. See the history of this page for a list of all contributions to it.