Duflo isomorphism




A form of PBW theorem says that the symmetric algebra and the universal enveloping algebra of a Lie algebra gg are isomorphic as vector spaces (in fact coalgebras and gg-modules). However this is not an isomorphism of algebras, but rather an isomorphism of filtered coalgebras. One can compose the PBW isomorphism with an additional automorphism to get an isomorphism of vector spaces which restricts to isomorphism of algebras when restricted to the subalgebras of gg-invariant functions.

The original proof by Duflo is rather case by case, using the structure theory of Lie algebras. Kontsevich in 1998 gave a new proof which generalizes to some geometric situations in deformation quantization and which refines to a fact at the derived level (expressed in terms of an isomorphism at the level of Hochschild cohomology). At the level of derived geometry this expresses the property of certain derived exponential map constructed using Hochschild-Kostant-Rosenberg map precomposed by a square root of the Todd class in appropriate setup. This has prompted a series of articles by Markarian, Caldararu, Chen and others to explain the appearance of Todd class (or related Atiyah class). Refinements and analogues include Kashiwara-Vergne conjecture.


Original article:

Further discussion:

  • Damien Calaque, Carlo A. Rossi, Lectures on Duflo isomorphisms in Lie algebra and complex geometry, European Math. Soc. 2011

  • M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216; Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35–72.

  • Adrien Brochier, A Duflo star-product for Poisson groups(arxiv/1604.08450)

See also:

Last revised on August 18, 2021 at 15:52:41. See the history of this page for a list of all contributions to it.