nLab
Poincaré-Weyl algebra
Contents
Context
∞ \infty -Lie theory
∞-Lie theory (higher geometry )
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
∞ \infty -Lie groupoids
∞ \infty -Lie groups
∞ \infty -Lie algebroids
∞ \infty -Lie algebras
Contents
Idea
An extension of the Poincaré Lie algebra by the dilatation generator.
Definition
The Poincaré-Weyl algebra is defined by generators { M μ ν , P λ , D } \{M_{\mu \nu}, P_{\lambda}, D\} satisfying the relations
[ M μ ν , M ρ σ ] = i ( η μ ρ M ν σ − η μ σ M ν ρ + η ν ρ M μ σ − η ν σ M μ ρ )
[M_{\mu\nu}, M_{\rho \sigma} ] = i (\eta_{\mu \rho} M_{\nu \sigma} - \eta_{\mu \sigma} M_{\nu \rho} + \eta_{\nu \rho} M_{\mu \sigma} - \eta_{\nu \sigma} M_{\mu \rho} )
[ M μ ν , P λ ] = i ( η μ λ P ν − η ν λ P μ ) )
[M_{\mu \nu}, P_{\lambda}] = i(\eta_{\mu \lambda} P_{\nu} - \eta_{\nu \lambda} P_{\mu}) )
[ D , M μ ν ] = [ P μ , P ν ] = 0
[D, M_{\mu \nu} ] = [P_{\mu}, P_{\nu} ] = 0
[ D , P μ ] = i P μ
[D,P_{\mu} ] = i P_{\mu}
(see e.g. Eq. 2.10-14 in Charap & Tait 1974 ).
References
J. M. Charap and W. Tait. A gauge theory of the Weyl group . Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 340, no. 1622 (1974): 249-262. (doi )
Created on March 2, 2024 at 18:31:25.
See the history of this page for a list of all contributions to it.