nLab Poincaré-Weyl algebra

Contents

Context

\infty-Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Contents

Idea

An extension of the Poincaré Lie algebra by the dilatation generator.

Definition

The Poincaré-Weyl algebra is defined by generators {M μν,P λ,D}\{M_{\mu \nu}, P_{\lambda}, D\} satisfying the relations

[M μν,M ρσ]=i(η μρM νση μσM νρ+η νρM μση νσM μρ) [M_{\mu\nu}, M_{\rho \sigma} ] = i (\eta_{\mu \rho} M_{\nu \sigma} - \eta_{\mu \sigma} M_{\nu \rho} + \eta_{\nu \rho} M_{\mu \sigma} - \eta_{\nu \sigma} M_{\mu \rho} )
[M μν,P λ]=i(η μλP νη νλP μ)) [M_{\mu \nu}, P_{\lambda}] = i(\eta_{\mu \lambda} P_{\nu} - \eta_{\nu \lambda} P_{\mu}) )
[D,M μν]=[P μ,P ν]=0 [D, M_{\mu \nu} ] = [P_{\mu}, P_{\nu} ] = 0
[D,P μ]=iP μ [D,P_{\mu} ] = i P_{\mu}

(see e.g. Eq. 2.10-14 in Charap & Tait 1974).

References

  • J. M. Charap and W. Tait. A gauge theory of the Weyl group. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 340, no. 1622 (1974): 249-262. (doi)

Created on March 2, 2024 at 18:31:25. See the history of this page for a list of all contributions to it.