nLab Weyl ring

Contents

Context

Algebra

Group theory

Contents

Idea

A \mathbb{Z}-Weyl algebra.

Definition

Finitely generated Weyl rings

Given an abelian group GG, the nn-th Weyl ring is a ring A n(G)A_n(G) with

  • an abelian group homomorphism g:GA n(G)g:G \to A_n(G)

  • a function x:[1,n]A n(G)x:[1, n] \to A_n(G)

  • a function :[1,n]A n(G)\partial:[1, n] \to A_n(G)

such that

  • for every number i,j[1,n]i, j \in [1,n], x(i)x(j)=x(j)x(i)x(i) \cdot x(j) = x(j) \cdot x(i)

  • for every number i,j[1,n]i, j \in [1,n], (i)(j)=(j)(i)\partial(i) \cdot \partial(j) = \partial(j) \cdot \partial(i)

  • for every number i[1,n]i \in [1,n], (i)x(i)x(i)(i)=1\partial(i) \cdot x(i) - x(i) \cdot \partial(i) = 1

  • for every number i,j[1,n]i, j \in [1,n], iji \neq j implies (i)x(j)x(j)(i)=0\partial(i) \cdot x(j) - x(j) \cdot \partial(i) = 0

  • for every other ring RR with abelian group homomorphism h:GRh:G \to R with

    • a function x:[1,n]Rx:[1, n] \to R

    • a function :[1,n]R\partial:[1, n] \to R

where

  • for every number i,j[1,n]i, j \in [1,n], x(i)x(j)=x(j)x(i)x(i) \cdot x(j) = x(j) \cdot x(i)

  • for every number i,j[1,n]i, j \in [1,n], (i)(j)=(j)(i)\partial(i) \cdot \partial(j) = \partial(j) \cdot \partial(i)

  • for every number i[1,n]i \in [1,n], (i)x(i)x(i)(i)=1\partial(i) \cdot x(i) - x(i) \cdot \partial(i) = 1

  • for every number i,j[1,n]i, j \in [1,n], iji \neq j implies (i)x(j)x(j)(i)=0\partial(i) \cdot x(j) - x(j) \cdot \partial(i) = 0

there is a unique ring homomorphism i:A n(G)Ri:A_n(G) \to R such that ig=hi \circ g = h.

General Weyl rings

Given an abelian group GG and a set SS with stable equality, the SS-generated Weyl ring is a ring A(S,G)A(S,G) with

  • an abelian group homomorphism g:GA(S,G)g:G \to A(S,G)

  • a function x:SA(S,G)x:S \to A(S,G)

  • a function :SA(S,G)\partial:S \to A(S,G)

such that

  • for every number i,jSi, j \in S, x(i)x(j)=x(j)x(i)x(i) \cdot x(j) = x(j) \cdot x(i)

  • for every number i,jSi, j \in S, (i)(j)=(j)(i)\partial(i) \cdot \partial(j) = \partial(j) \cdot \partial(i)

  • for every number iSi \in S, (i)x(i)x(i)(i)=1\partial(i) \cdot x(i) - x(i) \cdot \partial(i) = 1

  • for every number i,jSi, j \in S, iji \neq j implies (i)x(j)x(j)(i)=0\partial(i) \cdot x(j) - x(j) \cdot \partial(i) = 0

  • for every other ring RR with abelian group homomorphism h:GRh:G \to R with

    • a function x:SRx:S \to R

    • a function :SR\partial:S \to R

where

  • for every number i,jSi, j \in S, x(i)x(j)=x(j)x(i)x(i) \cdot x(j) = x(j) \cdot x(i)

  • for every number i,jSi, j \in S, (i)(j)=(j)(i)\partial(i) \cdot \partial(j) = \partial(j) \cdot \partial(i)

  • for every number iSi \in S, (i)x(i)x(i)(i)=1\partial(i) \cdot x(i) - x(i) \cdot \partial(i) = 1

  • for every number i,jSi, j \in S, iji \neq j implies (i)x(j)x(j)(i)=0\partial(i) \cdot x(j) - x(j) \cdot \partial(i) = 0

there is a unique ring homomorphism i:A(S,G)Ri:A(S,G) \to R such that ig=hi \circ g = h.

See also

Last revised on August 19, 2024 at 15:29:29. See the history of this page for a list of all contributions to it.