nLab quantum propagator

Redirected from "quantum propagators".
Contents

Context

Physics

physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes


theory (physics), model (physics)

experiment, measurement, computable physics

Contents

Idea

In quantum physics and in the Schrödinger picture, the term propagator refers to the linear map between spaces of quantum states (wave functions) which describes how these states change in time (spacetime), hence how the corresponding quantum system propagates.

In quantum mechanics the time propagator is given by the parallel transport along the worldline given by the Hamiltonian (energy) quantum operator.

In perturbative quantum field theory of free fields propagation is typically encoded in the Green functions of the wave equation/Klein-Gordon operator and here it is these Green functions that are referred to as propagators.

propagators (i.e. integral kernels of Green functions)
for the wave operator and Klein-Gordon operator
on a globally hyperbolic spacetime such as Minkowski spacetime:

namesymbolwave front setas vacuum exp. value
of field operators
as a product of
field operators
causal propagatorΔ S =Δ +Δ \begin{aligned}\Delta_S & = \Delta_+ - \Delta_- \end{aligned}
A\phantom{A}\,\,\,-
iΔ S(x,y)= [Φ(x),Φ(y)]\begin{aligned} & i \hbar \, \Delta_S(x,y) = \\ & \left\langle \;\left[\mathbf{\Phi}(x),\mathbf{\Phi}(y)\right]\; \right\rangle \end{aligned} Peierls-Poisson bracket
advanced propagatorΔ +\Delta_+ iΔ +(x,y)= {[Φ(x),Φ(y)] | xy 0 | yx\begin{aligned} & i \hbar \, \Delta_+(x,y) = \\ & \left\{ \array{ \left\langle \; \left[ \mathbf{\Phi}(x),\mathbf{\Phi}(y) \right] \; \right\rangle &\vert& x \geq y \\ 0 &\vert& y \geq x } \right. \end{aligned} future part of
Peierls-Poisson bracket
retarded propagatorΔ \Delta_- iΔ (x,y)= {[Φ(x),Φ(y)] | yx 0 | xy\begin{aligned} & i \hbar \, \Delta_-(x,y) = \\ & \left\{ \array{ \left\langle \; \left[\mathbf{\Phi}(x),\mathbf{\Phi}(y) \right] \; \right\rangle &\vert& y \geq x \\ 0 &\vert& x \geq y } \right. \end{aligned}past part of
Peierls-Poisson bracket
Wightman propagatorΔ H =i2(Δ +Δ )+H =i2Δ S+H =Δ FiΔ \begin{aligned} \Delta_H &= \tfrac{i}{2}\left( \Delta_+ - \Delta_-\right) + H\\ & = \tfrac{i}{2}\Delta_S + H \\ & = \Delta_F - i \Delta_- \end{aligned} Δ H(x,y) =Φ(x)Φ(y) =:Φ(x)Φ(y):=0 =+[Φ ()(x),Φ (+)(y)]\begin{aligned} & \hbar \, \Delta_H(x,y) \\ & = \left\langle \; \mathbf{\Phi}(x) \mathbf{\Phi}(y) \; \right\rangle \\ & = \underset{ = 0 }{\underbrace{\left\langle \; : \mathbf{\Phi}(x) \mathbf{\Phi}(y) : \; \right\rangle}} \\ & \phantom{=} + \left\langle \; \left[ \mathbf{\Phi}^{(-)}(x), \mathbf{\Phi}^{(+)}(y) \right] \; \right\rangle \end{aligned} positive frequency of
Peierls-Poisson bracket,
Wick algebra-product,
2-point function
=\phantom{=} of vacuum state
=\phantom{=} or generally of
=\phantom{=} Hadamard state
Feynman propagatorΔ F =i2(Δ ++Δ )+H =iΔ D+H =Δ H+iΔ \begin{aligned}\Delta_F & = \tfrac{i}{2}\left( \Delta_+ + \Delta_- \right) + H \\ & = i \Delta_D + H \\ & = \Delta_H + i \Delta_- \end{aligned} Δ F(x,y) =T(Φ(x)Φ(y)) ={Φ(x)Φ(x) | xy Φ(y)Φ(x) | yx\begin{aligned} & \hbar \, \Delta_F(x,y) \\ & = \left\langle \; T\left( \; \mathbf{\Phi}(x)\mathbf{\Phi}(y) \;\right) \; \right\rangle \\ & = \left\{ \array{ \left\langle \; \mathbf{\Phi}(x)\mathbf{\Phi}(x) \; \right\rangle &\vert& x \geq y \\ \left\langle \; \mathbf{\Phi}(y) \mathbf{\Phi}(x) \; \right\rangle &\vert& y \geq x } \right.\end{aligned}time-ordered product

(see also Kocic‘s overview: pdf)

Further examples

References

An overview of the Green functions of the Klein-Gordon operator, hence the Feynman propagator, advanced propagator, retarded propagator, causal propagator etc. is given in

  • Mikica Kocic, Invariant Commutation and Propagation Functions Invariant Commutation and Propagation Functions, 2016 (pdf)

Last revised on November 5, 2018 at 06:23:44. See the history of this page for a list of all contributions to it.