∞-Lie theory (higher geometry)
Background
Smooth structure
Higher groupoids
Lie theory
∞-Lie groupoids
∞-Lie algebroids
Formal Lie groupoids
Cohomology
Homotopy
Related topics
Examples
-Lie groupoids
-Lie groups
-Lie algebroids
-Lie algebras
The concept of Borcherds algebra or Borcherds-Kac-Moody algebra is a generalization of that of Kac-Moody algebra (hence also called generalized Kac-Moody algebra) obtained by allowing imaginary simple roots.
Original articles:
Richard Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501–512.
Richard Borcherds, Central extensions of generalized Kac-Moody algebras, J. Algebra.140, 330-335 (1991).
Victor Kac, Infinite dimensional Lie algebras, third edition, Cambridge University Press, 1990.
See also:
Relation to U-duality and E11 (via mysterious duality) is discussed in
Pierre Henry-Labordere, Bernard Julia, Louis Paulot, Borcherds symmetries in M-theory, JHEP 0204 (2002) 049 (arXiv:http://arxiv.org/abs/hep-th/0203070)
Marc Henneaux, Bernard Julia, Jérôme Levie, , Borcherds algebras and maximal supergravity (arxiv:1007.5241)
and specifically to tensor hierarchies in gauged supergravity
Jakob Palmkvist, Tensor hierarchies, Borcherds algebras and , JHEP 1202 (2012) 066 (arXiv:1110.4892)
Jakob Palmkvist, The tensor hierarchy algebra, J. Math. Phys. 55, 011701 (2014) (arXiv:1305.0018)
and to exceptional generalized geometry
Last revised on May 23, 2020 at 12:52:46. See the history of this page for a list of all contributions to it.