nLab E-category

Contents

Context

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
propositionsetobjecttype
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels

semantics

Category theory

Contents

Idea

An E-category is a category enriched over setoids. This is mainly used in dependent type theory; from that point of view, it is related to a precategory but with specified equivalence relations rather than identity type as the “equality of morphisms”.

Definition

In intensional type theory, an E-category or 𝒞\mathcal{C} consists of

  • a type of objects Ob(𝒞)Ob(\mathcal{C}),
  • for each object A:Ob(𝒞)A:Ob(\mathcal{C}) and B:Ob(𝒞)B:Ob(\mathcal{C}), a setoid (Hom(A,B), Hom(A,B))(Hom(A, B), \sim_{Hom(A, B)}) of morphisms
  • for each object A:Ob(𝒞)A:Ob(\mathcal{C}), B:Ob(𝒞)B:Ob(\mathcal{C}), and C:Ob(𝒞)C:Ob(\mathcal{C}), a binary function
    () A,B,C():Hom(B,C)×Hom(A,B)Hom(A,C)(-)\circ_{A, B, C}(-) :Hom(B, C) \times Hom(A, B) \to Hom(A, C)

    such that for each morphism f:Hom(A,B)f:Hom(A, B), g:Hom(A,B)g:Hom(A, B), h:Hom(B,C)h:Hom(B, C) and k:Hom(B,C)k:Hom(B, C), there is a witness of extensionality

    ext(A,B,C,f,g,h,k):(f Hom(A,B)g)×(h Hom(B,C)k)(h A,B,Cf Hom(A,C)k A,B,Cg)\mathrm{ext}(A, B, C, f, g, h, k):(f \sim_{Hom(A, B)} g) \times (h \sim_{Hom(B, C)} k) \to (h \circ_{A, B, C} f \sim_{Hom(A, C)} k \circ_{A, B, C} g)
  • for each object A:Ob(𝒞)A:Ob(\mathcal{C}), a morphism id A:Hom(A,A)\mathrm{id}_A:Hom(A, A)
  • such that
    • the composition of morphisms is associative: for each object A:Ob(𝒞)A:Ob(\mathcal{C}), B:Ob(𝒞)B:Ob(\mathcal{C}), C:Ob(𝒞)C:Ob(\mathcal{C}), and D:Ob(𝒞)D:Ob(\mathcal{C}), and for each morphism f:Hom(A,B)f:Hom(A, B), g:Hom(B,C)g:Hom(B, C), and h:Hom(C,D)h:Hom(C, D), there is a witness of associativity
      assoc(A,B,C,D,f,g,h):h A,C,D(g A,B,Cf) Hom(A,D)h B,C,D(g A,B,Df)\mathrm{assoc}(A, B, C, D, f, g, h):h \circ_{A, C, D} (g \circ_{A, B, C} f) \sim_{Hom(A, D)} h \circ_{B, C, D} (g \circ_{A, B, D} f)
    • the composition of morphisms satisfies the left and right unit laws: for each object A:Ob(𝒞)A:Ob(\mathcal{C}) and B:Ob(𝒞)B :Ob(\mathcal{C}) and morphism f:Hom(A,B)f:Hom(A, B), there are witnesses for left and right unitality
      lunital(A,B,f):id B A,B,Bf Hom(A,B)f\mathrm{lunital}(A, B, f):\mathrm{id}_B \circ_{A, B, B} f \sim_{Hom(A, B)} f
      runital(A,B,f):f A,A,Bid A Hom(A,B)f\mathrm{runital}(A, B, f):f \circ_{A, A, B} \mathrm{id}_A \sim_{Hom(A, B)} f

Properties

An E-category is locally univalent or a precategory if for all objects AA and BB and morphisms f:Hom(A,B)f:Hom(A, B) and g:Hom(A,B)g:Hom(A, B) the canonical function

idtoequivrel(A,B,f,g):f= Hom(A,B)gf Hom(A,B)gidtoequivrel(A, B, f, g):f =_{Hom(A, B)} g \to f \sim_{Hom(A, B)} g

is an equivalence of types.

An isomorphism in a E-category is a morphism f:Hom(A,B)f:Hom(A, B) with a morphism g:Hom(B,A)g:Hom(B, A) and witnesses

ret(A,B,f,g):gf Hom(A,A)id A\mathrm{ret}(A, B, f, g): g \circ f \sim_{Hom(A, A)} id_A
sec(A,B,f,g):fg Hom(B,B)id B\mathrm{sec}(A, B, f, g): f \circ g \sim_{Hom(B, B)} id_B

The type of all isomorphisms between AA and BB is represented by A 𝒞BA \cong_{\mathcal{C}} B.

An E-category is univalent, or a univalent category, if it is locally univalent and for all objects AA and BB the canonical function

idtoiso(A,B):A= Ob(𝒞)BA 𝒞Bidtoiso(A, B):A =_{Ob(\mathcal{C})} B \to A \cong_{\mathcal{C}} B

is an equivalence of types.

See also

Last revised on September 26, 2022 at 05:31:09. See the history of this page for a list of all contributions to it.