nLab
E-category
Contents
Context
Type theory
Category theory
Contents
Idea
An E-category is a category enriched over setoids . This is mainly used in dependent type theory ; from that point of view, it is related to a precategory but with specified equivalence relations rather than identity type as the “equality of morphisms”.
Definition
In intensional type theory , an E-category or 𝒞 \mathcal{C} consists of
a type of objects Ob ( 𝒞 ) Ob(\mathcal{C}) ,
for each object A : Ob ( 𝒞 ) A:Ob(\mathcal{C}) and B : Ob ( 𝒞 ) B:Ob(\mathcal{C}) , a setoid ( Hom ( A , B ) , ∼ Hom ( A , B ) ) (Hom(A, B), \sim_{Hom(A, B)}) of morphisms
for each object A : Ob ( 𝒞 ) A:Ob(\mathcal{C}) , B : Ob ( 𝒞 ) B:Ob(\mathcal{C}) , and C : Ob ( 𝒞 ) C:Ob(\mathcal{C}) , a binary function ( − ) ∘ A , B , C ( − ) : Hom ( B , C ) × Hom ( A , B ) → Hom ( A , C ) (-)\circ_{A, B, C}(-) :Hom(B, C) \times Hom(A, B) \to Hom(A, C)
such that for each morphism f : Hom ( A , B ) f:Hom(A, B) , g : Hom ( A , B ) g:Hom(A, B) , h : Hom ( B , C ) h:Hom(B, C) and k : Hom ( B , C ) k:Hom(B, C) , there is a witness of extensionality
ext ( A , B , C , f , g , h , k ) : ( f ∼ Hom ( A , B ) g ) × ( h ∼ Hom ( B , C ) k ) → ( h ∘ A , B , C f ∼ Hom ( A , C ) k ∘ A , B , C g ) \mathrm{ext}(A, B, C, f, g, h, k):(f \sim_{Hom(A, B)} g) \times (h \sim_{Hom(B, C)} k) \to (h \circ_{A, B, C} f \sim_{Hom(A, C)} k \circ_{A, B, C} g)
for each object A : Ob ( 𝒞 ) A:Ob(\mathcal{C}) , a morphism id A : Hom ( A , A ) \mathrm{id}_A:Hom(A, A)
such that
the composition of morphisms is associative : for each object A : Ob ( 𝒞 ) A:Ob(\mathcal{C}) , B : Ob ( 𝒞 ) B:Ob(\mathcal{C}) , C : Ob ( 𝒞 ) C:Ob(\mathcal{C}) , and D : Ob ( 𝒞 ) D:Ob(\mathcal{C}) , and for each morphism f : Hom ( A , B ) f:Hom(A, B) , g : Hom ( B , C ) g:Hom(B, C) , and h : Hom ( C , D ) h:Hom(C, D) , there is a witness of associativityassoc ( A , B , C , D , f , g , h ) : h ∘ A , C , D ( g ∘ A , B , C f ) ∼ Hom ( A , D ) h ∘ B , C , D ( g ∘ A , B , D f ) \mathrm{assoc}(A, B, C, D, f, g, h):h \circ_{A, C, D} (g \circ_{A, B, C} f) \sim_{Hom(A, D)} h \circ_{B, C, D} (g \circ_{A, B, D} f)
the composition of morphisms satisfies the left and right unit laws : for each object A : Ob ( 𝒞 ) A:Ob(\mathcal{C}) and B : Ob ( 𝒞 ) B :Ob(\mathcal{C}) and morphism f : Hom ( A , B ) f:Hom(A, B) , there are witnesses for left and right unitalitylunital ( A , B , f ) : id B ∘ A , B , B f ∼ Hom ( A , B ) f \mathrm{lunital}(A, B, f):\mathrm{id}_B \circ_{A, B, B} f \sim_{Hom(A, B)} f runital ( A , B , f ) : f ∘ A , A , B id A ∼ Hom ( A , B ) f \mathrm{runital}(A, B, f):f \circ_{A, A, B} \mathrm{id}_A \sim_{Hom(A, B)} f
Properties
An E-category is locally univalent or a precategory if for all objects A A and B B and morphisms f : Hom ( A , B ) f:Hom(A, B) and g : Hom ( A , B ) g:Hom(A, B) the canonical function
idtoequivrel ( A , B , f , g ) : f = Hom ( A , B ) g → f ∼ Hom ( A , B ) g idtoequivrel(A, B, f, g):f =_{Hom(A, B)} g \to f \sim_{Hom(A, B)} g
is an equivalence of types.
An isomorphism in a E-category is a morphism f : Hom ( A , B ) f:Hom(A, B) with a morphism g : Hom ( B , A ) g:Hom(B, A) and witnesses
ret ( A , B , f , g ) : g ∘ f ∼ Hom ( A , A ) id A \mathrm{ret}(A, B, f, g): g \circ f \sim_{Hom(A, A)} id_A sec ( A , B , f , g ) : f ∘ g ∼ Hom ( B , B ) id B \mathrm{sec}(A, B, f, g): f \circ g \sim_{Hom(B, B)} id_B
The type of all isomorphisms between A A and B B is represented by A ≅ 𝒞 B A \cong_{\mathcal{C}} B .
An E-category is univalent , or a univalent category , if it is locally univalent and for all objects A A and B B the canonical function
idtoiso ( A , B ) : A = Ob ( 𝒞 ) B → A ≅ 𝒞 B idtoiso(A, B):A =_{Ob(\mathcal{C})} B \to A \cong_{\mathcal{C}} B
is an equivalence of types.
See also
Last revised on September 26, 2022 at 05:31:09.
See the history of this page for a list of all contributions to it.