The universal property defining (internal) coinductive types in HoTT is dual to the one defining (internal) inductive types. One might hence assume that their existence is equivalent to a set of type-theoretic rules dual (in a suitable sense) to those given for external W-types… However, the rules for external W-types cannot be dualized in a naïve way, due to some asymmetry of HoTT related to dependent types as maps into a “type of types” (a universe) (ACS15)

However, it is possible instead to dualize the alternative characterization of inductive types as initial algebras for a notion of coinductive types as terminal coalgebras, and that can be formulated (and often constructed) in ordinary HoTT. In (ACS15) the authors proceed to construct coinductive types from indexed inductive types.