model category, model -category
Definitions
Morphisms
Universal constructions
Refinements
Producing new model structures
Presentation of -categories
Model structures
for -groupoids
on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
for equivariant -groupoids
for rational -groupoids
for rational equivariant -groupoids
for -groupoids
for -groups
for -algebras
general -algebras
specific -algebras
for stable/spectrum objects
for -categories
for stable -categories
for -operads
for -categories
for -sheaves / -stacks
With braiding
With duals for objects
category with duals (list of them)
dualizable object (what they have)
ribbon category, a.k.a. tortile category
With duals for morphisms
With traces
Closed structure
Special sorts of products
Semisimplicity
Morphisms
Internal monoids
Examples
Theorems
In higher category theory
symmetric monoidal (∞,1)-category of spectra
An -monoid (or E-infinity monoid object) in a symmetric monoidal model category is an algebra over an operad over the E-infinity operad. Assuming that is cofibrantly generated, there is a model structure on -monoids, given by the model structure on algebras over an operad over the E-infinity operad (which is cofibrant). This model category presents the (infinity,1)-category of commutative monoids in a symmetric monoidal (infinity,1)-category (in the symmetric monoidal (infinity,1)-category presented by ).
In some symmetric monoidal model categories, -monoids can be rectified to (strictly) commutative monoids in a symmetric monoidal model category. See there for more.
Created on March 11, 2015 at 13:15:32. See the history of this page for a list of all contributions to it.