model category, model $\infty$-category
Definitions
Morphisms
Universal constructions
Refinements
Producing new model structures
Presentation of $(\infty,1)$-categories
Model structures
for $\infty$-groupoids
on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
for equivariant $\infty$-groupoids
for rational $\infty$-groupoids
for rational equivariant $\infty$-groupoids
for $n$-groupoids
for $\infty$-groups
for $\infty$-algebras
general $\infty$-algebras
specific $\infty$-algebras
for stable/spectrum objects
for $(\infty,1)$-categories
for stable $(\infty,1)$-categories
for $(\infty,1)$-operads
for $(n,r)$-categories
for $(\infty,1)$-sheaves / $\infty$-stacks
category with duals (list of them)
dualizable object (what they have)
ribbon category, a.k.a. tortile category
monoidal dagger-category?
symmetric monoidal (∞,1)-category of spectra
For $C$ a monoidal model category there is under mild conditions a natural model category structure on its category of monoids.
For $C$ a monoidal category with all colimits, its category of monoids comes equipped (as discussed there) with a free functor/forgetful functor adjunction
Typically one uses on $Mon(C)$ the transferred model structure along this adjunction, if it exists.
If $C$ is monoidal model category that
satisfies the monoid axiom in a monoidal model category;
all objects are small objects,
then the transferred model structure along the free functor/forgetful functor adjunction $(F \dashv U) : Mon(C) \stackrel{\overset{F}{\leftarrow}}{\underset{U}{\to}} C$ exists on its category of monoids.
This is part of (SchwedeShipley, theorem 4.1).
If the symmetric monoidal model category $C$
its unit is cofibrant
it has a suitable interval object
then the transferred model structure on monoids exists.
Regard monoids a algebras over an operad for the associative operad. Then apply the existence results discussed at model structure on algebras over an operad. See there for more details.
Suppose the transferred model structure exists on $Mon(C)$. By the discussion of free monoids at category of monoids we have that then pushouts of the form
exist in $Mon(C)$, for all $f : A \to B$ in $C$
Let the monoidal model category $C$ be
and satisfy the monoid axiom in a monoidal model category.
If $f : A\to B$ is an acyclic cofibration in the model structure on $C$, then the pushout $X \to P$ as above is a weak equivalence in $Mon(C)$.
This is SchwedeShipley, lemma 6.2.
Use the description of the pushout as a transfinite composite of pushouts as described at category of monoids in the section free and relative free monoids.
One sees that the pushout product axiom implies that all the intermediate pushouts produce acyclic cofibrations and the monoid axiom in a monoidal model category implies then that each $P_{n-1} \to P_n$ is a weak equivalence. Moreover, all these moprhisms are of the kind used in the monoid axioms, so also their transfinite composition is a weak equivalence.
Under mild conditions on $C$ the model structure on monoids in $C$ is Quillen equivalent to that of A-infinity algebras in $C$. See model structure on algebras over an operad for details.
model structure on monoids in a monoidal model category
model structure on commutative monoids in a symmetric monoidal model category
Stefan Schwede, Brooke Shipley, Algebras and modules in monoidal model categories Proc. London Math. Soc. (2000) 80(2): 491-511 (pdf)
David White, Model Structures on Commutative Monoids in General Model Categories (arXiv:1403.6759)
Last revised on May 29, 2022 at 19:22:32. See the history of this page for a list of all contributions to it.