# nLab MOFr

Contents

### Context

#### Cobordism theory

Concepts of cobordism theory

flavors of bordism homology theories/cobordism cohomology theories, their representing Thom spectra and cobordism rings:

bordism theory$\;$M(B,f) (B-bordism):

relative bordism theories:

algebraic:

under construction

# Contents

## Idea

cobordism theory for unoriented manifolds with stably framed boundaries, thus unifying MO with MFr.

## Definition

Consider the cofiber sequence of the unit morphism of the ring spectrum MO

(1)$\array{ \mathbb{S} & \overset{ 1^{M\mathrm{O}} }{ \longrightarrow } & M \mathrm{O} \\ \big\downarrow & {}^{{}_{(po)}} & \big\downarrow \\ \ast &\longrightarrow& M \mathrm{O}/ \mathbb{S} }$
$M(\mathrm{O},fr) \;\coloneqq\; M \mathrm{O} / \mathbb{S} \,,$

has stable homotopy groups the cobordism ring of unoriented bordisms with stably framed boundaries

(2)$\Omega^{\mathrm{O},fr}_{\bullet} \;\coloneqq\; \pi_{\bullet} \big( M\mathrm{O}/\mathbb{S} \big)$

## Properties

### Boundary morphism to $MFr$

The realization (1) makes it manifest that there is a cohomology operation to MFr of the form

(3)$\array{ M(\mathrm{O},fr) \;= & M \mathrm{O}/\mathbb{S} & \overset{ \;\;\; \partial \;\;\; }{\longrightarrow} & \Sigma \mathbb{S} & =\; \Sigma Mfr \\ \pi_{2d+2}\big( M(\mathrm{O},fr) \big) && \longrightarrow && \pi_{2d+1}\big( Mfr \big) } \,.$

Namely, $\partial$ is the second next step in the long homotopy cofiber-sequence starting with $1^{M \mathrm{O}}$. In terms of the pasting law:

(4)$\array{ \mathbb{S} & \overset{ 1^{M\mathrm{O}} }{ \longrightarrow } & M \mathrm{O} & \longrightarrow & \ast \\ \big\downarrow & {}^{{}_{(po)}} & \big\downarrow & {}^{{}_{(po)}} & \big\downarrow \\ \ast & \longrightarrow & M \mathrm{O}/ \mathbb{S} & \underset{ \partial }{ \longrightarrow } & \Sigma \mathbb{S} }$

### Relation to $M \mathrm{O}$ and $M Fr$

###### Proposition

The unit morphism of MO is trivial on stable homotopy groups in positive degree:

$\array{ \pi_{n+1} \big( \mathbb{S} \big) & \overset{ 1^{M \mathrm{O}} }{\longrightarrow} & \pi_{n + 1} \big( M \mathrm{O} \big) \\ \big\downarrow{}^{\mathrlap{=}} && \big\downarrow{}^{\mathrlap{=}} \\ \Omega^{fr}_{n + 1} &\underset{i}{\longrightarrow}& \Omega^{\mathrm{O}}_{n + 1} } \phantom{AAAAAAA} n \in \mathbb{N}$
###### Proposition

In positive degree, the underling abelian groups of the bordism rings for MO, MFr and $MOFr$ (2) sit in short exact sequences of this form:

(5)$0 \to \Omega^{\mathrm{O}}_{n+2} \overset{i}{\longrightarrow} \Omega^{\mathrm{O},fr}_{n+2} \overset{\partial}{ \longrightarrow } \Omega^{fr}_{n+1} \to 0 \,, \phantom{AAAA} n \in \mathbb{N} \,,$

where $i$ is the evident inclusion, while $\partial$ is the boundary homomorphism from above.

###### Proof

We have the long exact sequence of homotopy groups obtained from the cofiber sequence $\mathbb{S} \overset{1^{M\mathrm{O}}}{\longrightarrow} M \mathrm{O} \to M \mathrm{O}/\mathbb{S} \overset{\partial}{\to} \Sigma \mathbb{S}$ (4), the relevant part of which looks as follows:

(6)$\array{ \pi_{d+2} \big( \mathbb{S} \big) & \overset{ 1^{M\mathrm{O}} }{ \longrightarrow } & \pi_{d+2} \big( M\mathrm{O} \big) & \overset{ }{\longrightarrow} & \pi_{d+2} \big( M\mathrm{O}/\mathbb{S} \big) & \overset{ \partial }{\longrightarrow} & \pi_{d+1}\big(\mathbb{S}\big) &\longrightarrow& \pi_{d+1}\big(M\mathrm{O}\big) \\ \big\downarrow{}^{\mathrlap{=}} && \big\downarrow{}^{\mathrlap{=}} && \big\downarrow{}^{\mathrlap{=}} && \big\downarrow{}^{\mathrlap{=}} && \big\downarrow{}^{\mathrlap{=}} \\ \Omega^{fr}_{d+2} & \underset{ \color{green} 0 }{ \longrightarrow } & \Omega^{\mathrm{O}}_{d+2} & \underset{ i }{\longrightarrow} & \Omega^{(\mathrm{O},fr)}_{d+2} & \underset{ \partial }{\longrightarrow} & \Omega^{fr}_{d + 1} & \underset{ \color{green} 0 }{\longrightarrow} & \Omega^{\mathrm{O}}_{d+1} }$

Here the two outermost morphisms shown are zero morphisms, by Prop. , and hence the claim follows.

flavors of bordism homology theories/cobordism cohomology theories, their representing Thom spectra and cobordism rings:

bordism theory$\;$M(B,f) (B-bordism):

relative bordism theories:

algebraic:

## References

Analogous discussion for MO-bordism with MSO-boundaries:

• G. E. Mitchell, Bordism of Manifolds with Oriented Boundaries, Proceedings of the American Mathematical Society Vol. 47, No. 1 (Jan., 1975), pp. 208-214 (doi:10.2307/2040234)

Last revised on January 18, 2021 at 15:32:55. See the history of this page for a list of all contributions to it.