nLab Pontryagin's theorem

Redirected from "Pontrjagin's theorem".
Contents

Context

Algebraic topology

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Idea

The Pontryagin theorem (Pontryagin 38a, 50, 55 II.6) identifies, for a closed smooth manifold M dM^d

with

via

From SS 2021

In this form, with the assumption that M dM^d is closed, hence compact, the statement appears for instance in Kosinski 93, Sec. IX Prop. 5.5.

More generally, if the smooth manifold M dM^d is not assumed to be compact, essentially the same Pontryagin-Thom construction still gives an identification of the cobordism classes of its normally framed submanifolds with the reduced Cohomotopy of its one-point compactification:

This form of Pontryagin’s theorem seems to be folklore (e.g. here). It is made fully explicit in Csépai 20, p. 12-13.

An analogous statement, identifying cobordism classes of normally oriented submanifolds with homotopy classes of maps into the universal special orthogonal Thom space MSO(n)M SO(n), is Thom's theorem (Thom 54):

(Now the notion of asymptotic directed distance depends on the normal tangent spaces, along Σ\Sigma, which themselves vary now in the Grassmannian Gr nGr_n, hence in the classifying space B SO ( n ) B SO(n) MSO(n)\subset M SO(n).)

Both statements, Pontryagin’s and Thom’s, as well as their joint generalization to other tangential structures (besides framing and orientation structure) and notably their stabilization to Whitehead-generalized Cobordism cohomology theory, have all come to be widely known as the Pontryagin-Thom construction, or similar, a term commonly used also for rather more involved cases, such as in MUFr-theory. This type of construction constitutes the basis of modern cobordism theory and its application in stable homotopy theory.


References

Pontrjagin-Thom construction

Pontrjagin’s construction

General

The Pontryagin theorem, i.e. the unstable and framed version of the Pontrjagin-Thom construction, identifying cobordism classes of normally framed submanifolds with their Cohomotopy charge in unstable Borsuk-Spanier Cohomotopy sets, is due to:

(both available in English translation in Gamkrelidze 86),

as presented more comprehensively in:

The Pontrjagin theorem must have been known to Pontrjagin at least by 1936, when he announced the computation of the second stem of homotopy groups of spheres:

  • Lev Pontrjagin, Sur les transformations des sphères en sphères (pdf) in: Comptes Rendus du Congrès International des Mathématiques – Oslo 1936 (pdf)

Review:

Discussion of the early history:

Twisted/equivariant generalizations

The (fairly straightforward) generalization of the Pontrjagin theorem to the twisted Pontrjagin theorem, identifying twisted Cohomotopy with cobordism classes of normally twisted-framed submanifolds, is made explicit in:

A general equivariant Pontrjagin theorem – relating equivariant Cohomotopy to normal equivariant framed submanifolds – remains elusive, but on free G-manifolds it is again straightforward (and reduces to the twisted Pontrjagin theorem on the quotient space), made explicit in:

  • James Cruickshank, Thm. 5.0.6, Cor. 6.0.13 in: Twisted Cobordism and its Relationship to Equivariant Homotopy Theory, 1999 (pdf, pdf)
In negative codimension

In negative codimension, the Cohomotopy charge map from the Pontrjagin theorem gives the May-Segal theorem, now identifying Cohomotopy cocycle spaces with configuration spaces of points:

  • Peter May, The geometry of iterated loop spaces, Springer 1972 (pdf)

  • Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213–221. MR 0331377 (pdf)

    c Generalization of these constructions and results is due to

  • Dusa McDuff, Configuration spaces of positive and negative particles, Topology Volume 14, Issue 1, March 1975, Pages 91-107 (doi:10.1016/0040-9383(75)90038-5)

  • Carl-Friedrich Bödigheimer, Stable splittings of mapping spaces, Algebraic topology. Springer 1987. 174-187 (pdf, pdf)

Thom’s construction

Thom's theorem i.e. the unstable and oriented version of the Pontrjagin-Thom construction, identifying cobordism classes of normally oriented submanifolds with homotopy classes of maps to the universal special orthogonal Thom space MSO(n)M SO(n), is due to:

Textbook accounts:

Lashof’s construction

The joint generalization of Pontryagin 38a, 55 (framing structure) and Thom 54 (orientation structure) to any family of tangential structures (“(B,f)-structure”) is first made explicit in

and the general statement that has come to be known as the Pontryagin-Thom isomorphism (identifying the stable cobordism classes of normally (B,f)-structured submanifolds with homotopy classes of maps to the Thom spectrum Mf) is really due to Lashof 63, Theorem C.

Textbook accounts:

Lecture notes:

  • John Francis, Topology of manifolds course notes (2010) (web), Lecture 3: Thom’s theorem (pdf), Lecture 4 Transversality (notes by I. Bobkova) (pdf)

  • Cary Malkiewich, Section 3 of: Unoriented cobordism and MOM O, 2011 (pdf)

  • Tom Weston, Part I of An introduction to cobordism theory (pdf)

See also:

Cohomotopy in topological data analysis

Introducing persistent cohomotopy as a tool in topological data analysis, improving on the use of well groups from persistent homology:

Review:

Last revised on March 4, 2024 at 23:13:24. See the history of this page for a list of all contributions to it.