manifolds and cobordisms
cobordism theory, Introduction
A manifold is a topological space that is locally isomorphic to a Cartesian space .
A manifold with boundary is a topological space that is locally isomorphic either to an or to a half-space .
A manifold with corners is a topological space that is locally isomorphic to an for .
For details see at manifold.
(manifolds with boundaries and corners form full subcategory of diffeological spaces)
The evident functor
from the category of smooth manifolds with boundaries and corners to that of diffeological spaces is fully faithful, hence is a full subcategory-embedding.
(Iglesias-Zemmour 13, 4.16, Gürer & Iglesias-Zemmour 19)
On cobordism theory of MUFr-manifolds with boundaries, their e-invariant and their appearance in the first line of the Adams-Novikov spectral sequence:
Klaus Jänich, Section 1.2 of: On the classification of -manifolds, Math. Ann. 176, 53–76 (1968) (doi:10.1007/BF02052956)
Dominic Joyce, On manifolds with corners (arXiv:0910.3518)
The full subcategory-embedding of manifolds with boundaries and corners into that of diffeological spaces is discussed in:
Patrick Iglesias-Zemmour, section 4.16 of Diffeology, Mathematical Surveys and Monographs, AMS (2013) (web, publisher)
Serap Gürer, Patrick Iglesias-Zemmour, Differential forms on corners, 2017 (pdf)
Serap Gürer, Patrick Iglesias-Zemmour, Differential forms on manifolds with boundary and corners, Indagationes Mathematicae, Volume 30, Issue 5, September 2019, Pages 920-929 (doi:10.1016/j.indag.2019.07.004)
On cobordism theory of manifolds with corners:
Gerd Laures, On cobordism of manifolds with corners, Trans. Amer. Math. Soc. 352 (2000) (doi:10.1090/S0002-9947-00-02676-3)
(their f-invariant and their appearance in the second line of the Adams-Novikov spectral sequence)
Josh Genauer, Cobordism categories of manifolds with corners, Transactions of the American Mathematical Society Vol. 364, No. 1 (2012), pp. 519-550 (arXiv:0810.0581, jstor:41407770, doi:10.1090/S0002-9947-2011-05474-7)
Last revised on January 21, 2021 at 18:39:24. See the history of this page for a list of all contributions to it.