nLab Segal-Carlsson completion theorem

Contents

Context

Cohomology

cohomology

Special and general types

Special notions

Variants

Extra structure

Operations

Theorems

Stable Homotopy theory

Representation theory

Contents

Idea

The statement known as Segal’s conjecture (due to Graeme Segal in the 1970s, then proven by Carlsson 84) characterizes the stable cohomotopy groups π st (BG)\pi^\bullet_{st}(B G) of the classifying space BGB G of a finite group GG as the formal completion π^ S (BG)\widehat \pi^\bullet_S(B G) at the augmentation ideal (i.e. when regarded as a ring of functions: its restriction to the infinitesimal neighbourhood of the basepoint) of the ring π st,G (*)\pi^\bullet_{st,G}(\ast) of GG-equivariant stable cohomotopy groups of the point, the latter also being isomorphic to the Burnside ring A(G)A(G) of GG:

A(G)π st,G (*)completionprojectionπ^ st,G (*)π st (BG). A(G) \simeq \pi^\bullet_{st,G}(\ast) \overset{ \text{completion} \atop \text{projection} }{\longrightarrow} \widehat \pi^\bullet_{st,G}(\ast) \simeq \pi^\bullet_{st}(B G) \,.

This statement is the direct analogue of the Atiyah-Segal completion theorem, which makes the analogous statement for the generalized cohomology not being (equivariant) stable cohomotopy but (equivariant) complex K-theory (with the role of the Burnside ring then being the representation ring of GG).

(equivariant) cohomologyrepresenting
spectrum
equivariant cohomology
of the point *\ast
cohomology
of classifying space BGB G
(equivariant)
ordinary cohomology
HZBorel equivariance
H G (*)H (BG,)H^\bullet_G(\ast) \simeq H^\bullet(B G, \mathbb{Z})
(equivariant)
complex K-theory
KUrepresentation ring
KU G(*)R (G)KU_G(\ast) \simeq R_{\mathbb{C}}(G)
Atiyah-Segal completion theorem
R(G)KU G(*)compl.KU G(*)^KU(BG)R(G) \simeq KU_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {KU_G(\ast)} \simeq KU(B G)
(equivariant)
complex cobordism cohomology
MUMU G(*)MU_G(\ast)completion theorem for complex cobordism cohomology
MU G(*)compl.MU G(*)^MU(BG)MU_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {MU_G(\ast)} \simeq MU(B G)
(equivariant)
algebraic K-theory
K𝔽 pK \mathbb{F}_prepresentation ring
(K𝔽 p) G(*)R p(G)(K \mathbb{F}_p)_G(\ast) \simeq R_p(G)
Rector completion theorem
R 𝔽 p(G)K(𝔽 p) G(*)compl.(K𝔽 p) G(*)^Rector 73K𝔽 p(BG)R_{\mathbb{F}_p}(G) \simeq K (\mathbb{F}_p)_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {(K \mathbb{F}_p)_G(\ast)} \!\! \overset{\text{<a href="https://ncatlab.org/nlab/show/Rector+completion+theorem">Rector 73</a>}}{\simeq} \!\!\!\!\!\! K \mathbb{F}_p(B G)
(equivariant)
stable cohomotopy
K𝔽 1Segal 74K \mathbb{F}_1 \overset{\text{<a href="stable cohomotopy#StableCohomotopyIsAlgebraicKTheoryOverFieldWithOneElement">Segal 74</a>}}{\simeq} SBurnside ring
𝕊 G(*)A(G)\mathbb{S}_G(\ast) \simeq A(G)
Segal-Carlsson completion theorem
A(G)Segal 71𝕊 G(*)compl.𝕊 G(*)^Carlsson 84𝕊(BG)A(G) \overset{\text{<a href="https://ncatlab.org/nlab/show/Burnside+ring+is+equivariant+stable+cohomotopy+of+the+point">Segal 71</a>}}{\simeq} \mathbb{S}_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {\mathbb{S}_G(\ast)} \!\! \overset{\text{<a href="https://ncatlab.org/nlab/show/Segal-Carlsson+completion+theorem">Carlsson 84</a>}}{\simeq} \!\!\!\!\!\! \mathbb{S}(B G)

Applications

A proof of the Sullivan conjecture follows with the Segal-Carlsson completion theorem

References

The statement was proven in

  • Gunnar Carlsson, Equivariant Stable Homotopy and Segal’s Burnside Ring Conjecture, Annals of Mathematics Second Series, Vol. 120, No. 2 (Sep., 1984), pp. 189-224 (jstor:2006940, pdf)

see also

  • Erkki Laitinen, On the Burnside ring and stable cohomotopy of a finite group, Mathematica Scandinavica Vol. 44, No. 1 (August 30, 1979), pp. 37-72 (jstor:24491306, pdf)

  • Wolfgang Lück, The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups (arXiv:math/0504051)

Review includes

  • Peter May, section XX of Equivariant homotopy and cohomology theory CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. With contributions by M. Cole, G. Comeza˜na, S. Costenoble, A. D. Elmenddorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. (pdf)

Application to proof of the Sullivan conjecture is due to

See also

Last revised on September 10, 2018 at 12:14:28. See the history of this page for a list of all contributions to it.