group cohomology, nonabelian group cohomology, Lie group cohomology
cohomology with constant coefficients / with a local system of coefficients
differential cohomology
geometric representation theory
representation, 2-representation, ∞-representation
Grothendieck group, lambda-ring, symmetric function, formal group
principal bundle, torsor, vector bundle, Atiyah Lie algebroid
Eilenberg-Moore category, algebra over an operad, actegory, crossed module
Be?linson-Bernstein localization?
The statement known as Segal’s conjecture (due to Graeme Segal in the 1970s, then proven by Carlsson 84) characterizes the stable cohomotopy groups $\pi^\bullet_{st}(B G)$ of the classifying space $B G$ of a finite group $G$ as the formal completion $\widehat \pi^\bullet_S(B G)$ at the augmentation ideal (i.e. when regarded as a ring of functions: its restriction to the infinitesimal neighbourhood of the basepoint) of the ring $\pi^\bullet_{st,G}(\ast)$ of $G$-equivariant stable cohomotopy groups of the point, the latter also being isomorphic to the Burnside ring $A(G)$ of $G$:
This statement is the direct analogue of the Atiyah-Segal completion theorem, which makes the analogous statement for the generalized cohomology not being (equivariant) stable cohomotopy but (equivariant) complex K-theory (with the role of the Burnside ring then being the representation ring of $G$).
(equivariant) cohomology | representing spectrum | equivariant cohomology of the point $\ast$ | cohomology of classifying space $B G$ |
---|---|---|---|
(equivariant) ordinary cohomology | HZ | Borel equivariance $H^\bullet_G(\ast) \simeq H^\bullet(B G, \mathbb{Z})$ | |
(equivariant) complex K-theory | KU | representation ring $KU_G(\ast) \simeq R_{\mathbb{C}}(G)$ | Atiyah-Segal completion theorem $R(G) \simeq KU_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {KU_G(\ast)} \simeq KU(B G)$ |
(equivariant) complex cobordism cohomology | MU | $MU_G(\ast)$ | completion theorem for complex cobordism cohomology $MU_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {MU_G(\ast)} \simeq MU(B G)$ |
(equivariant) algebraic K-theory | $K \mathbb{F}_p$ | representation ring $(K \mathbb{F}_p)_G(\ast) \simeq R_p(G)$ | Rector completion theorem $R_{\mathbb{F}_p}(G) \simeq K (\mathbb{F}_p)_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {(K \mathbb{F}_p)_G(\ast)} \!\! \overset{\text{<a href="https://ncatlab.org/nlab/show/Rector+completion+theorem">Rector 73</a>}}{\simeq} \!\!\!\!\!\! K \mathbb{F}_p(B G)$ |
(equivariant) stable cohomotopy | K $\mathbb{F}_1 \overset{\text{<a href="stable cohomotopy#StableCohomotopyIsAlgebraicKTheoryOverFieldWithOneElement">Segal 74</a>}}{\simeq}$ S | Burnside ring $\mathbb{S}_G(\ast) \simeq A(G)$ | Segal-Carlsson completion theorem $A(G) \overset{\text{<a href="https://ncatlab.org/nlab/show/Burnside+ring+is+equivariant+stable+cohomotopy+of+the+point">Segal 71</a>}}{\simeq} \mathbb{S}_G(\ast) \overset{ \text{compl.} }{\longrightarrow} \widehat {\mathbb{S}_G(\ast)} \!\! \overset{\text{<a href="https://ncatlab.org/nlab/show/Segal-Carlsson+completion+theorem">Carlsson 84</a>}}{\simeq} \!\!\!\!\!\! \mathbb{S}(B G)$ |
A proof of the Sullivan conjecture follows with the Segal-Carlsson completion theorem
The statement was proven in
see also
Erkki Laitinen, On the Burnside ring and stable cohomotopy of a finite group, Mathematica Scandinavica Vol. 44, No. 1 (August 30, 1979), pp. 37-72 (jstor:24491306, pdf)
Wolfgang Lück, The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups (arXiv:math/0504051)
Review includes
Application to proof of the Sullivan conjecture is due to
See also
Last revised on September 10, 2018 at 08:14:28. See the history of this page for a list of all contributions to it.