nLab braided monoidal 2-category

Redirected from "braided monoidal bicategories".
Contents

Context

Monoidal categories

monoidal categories

With braiding

With duals for objects

With duals for morphisms

With traces

Closed structure

Special sorts of products

Semisimplicity

Morphisms

Internal monoids

Examples

Theorems

In higher category theory

2-Category theory

Contents

Idea

A braided monoidal (weak) 2-category is a monoidal 2-category with a categorified version of a braiding.

That is, it is a 2-category CC equipped with a tensor product :C×CC\otimes : C \times C \to C 2-functor which satisfies the first in a hierarchy of conditions for being commutative up to equivalence. In the language of k-tuply monoidal n-categories, a braided monoidal 2-category is a doubly monoidal 2-category. As described there, this may be identified with a pointed 4-category with a single object and a single 1-morphism. We can also say that it is a monoidal 2-category whose E1-algebra structure is refined to an E2-algebra structure.

Properties

Coherence theorem

Picard 2-groupoid

The Picard 2-groupoid of a braided monoidal 2-category is a braided 3-group.

References

Last revised on July 7, 2023 at 08:13:44. See the history of this page for a list of all contributions to it.