# Contents

## Idea

In the same way that one could define equivalence types as types of one-to-one correspondences and function types as types of anafunctions, one could define correspondence types as types of correspondences.

Correspondences are type families $x\colon A, y \colon B \vdash R(x, y) \; \mathrm{type}$. From every correspondence, one could derive the multivalued partial function

$x:A, p:\sum_{y:B} R(x, y) \vdash f(x, p):B$

and for every type family $x:A \vdash P(x)$ and every multivalued partial function $x:A, p:P(x) \vdash f(x, p):B$, one could define the correspondence $x:A, y:B \vdash R(x, y)$ as

$R(x, y) \coloneqq \sum_{p:P(x)} f(x, p) =_B y$

## Rules for correspondence types

The rules for correspondence types are as follows:

$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type}}{\Gamma \vdash \mathrm{Corr}(A, B) \; \mathrm{type}} \qquad \frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type}}{\Gamma, f:\mathrm{Corr}(A, B), x:A, y:B \vdash \mathcal{C}_{A, B}(f, x, y) \; \mathrm{type}}$
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type} \quad \Gamma, x:A \vdash P(x) \; \mathrm{type} \quad \Gamma, x:A, p:P(x) \vdash f(x, p):B}{\Gamma \vdash (x, p) \mapsto f(x, p):\mathrm{Corr}(A, B)}$
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type} \quad \Gamma, x:A \vdash P(x) \; \mathrm{type} \quad \Gamma, x:A, p:P(x) \vdash f(x, p):B}{\Gamma, x:A, p:P(x) \vdash \alpha(x, p):\mathcal{C}_{A, B}((x, p) \mapsto f(x, p), x, f(x, p))}$
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type} \quad \Gamma, x:A \vdash P(x) \; \mathrm{type}}{\Gamma, f:\mathrm{Corr}(A, B), x:A, p:P(x) \vdash \mathrm{ev}(f, x, p):B}$
$\frac{\Gamma \vdash A \; \mathrm{type} \quad \Gamma \vdash B \; \mathrm{type} \quad \Gamma, x:A \vdash P(x) \; \mathrm{type}}{\Gamma, f:\mathrm{Corr}(A, B), x:A, p:P(x) \vdash \beta(f, x, p):\mathcal{F}_{A, B}(f, x, \mathrm{ev}(f, x, p))}$