formal smooth manifold


This entry is about smooth manifolds with infinitesimal thickenings. For “formal spaces” in the sense that their de Rham complex is a formal dg-algebra, see there.


Synthetic differential geometry

synthetic differential geometry


from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry



smooth space


The magic algebraic facts




  • (shape modality \dashv flat modality \dashv sharp modality)

    (ʃ)(ʃ \dashv \flat \dashv \sharp )

  • dR-shape modality\dashv dR-flat modality

    ʃ dR dRʃ_{dR} \dashv \flat_{dR}

  • tangent cohesion

    • differential cohomology diagram
    • differential cohesion

      • (reduction modality \dashv infinitesimal shape modality \dashv infinitesimal flat modality)

        (&)(\Re \dashv \Im \dashv \&)

      • graded differential cohesion

        • fermionic modality\dashv bosonic modality \dashv rheonomy modality

          (Rh)(\rightrightarrows \dashv \rightsquigarrow \dashv Rh)

        • id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous *

          \array{ && id &\dashv& id \ && \vee && \vee \ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \ && \bot && \bot \ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& Rh & \stackrel{rheonomic}{} \ && \vee && \vee \ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \ && \bot && \bot \ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \ && \vee && \vee \ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \ && \bot && \bot \ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \ && \vee && \vee \ && \emptyset &\dashv& \ast }



          Lie theory, ∞-Lie theory

          differential equations, variational calculus

          Chern-Weil theory, ∞-Chern-Weil theory

          Cartan geometry (super, higher)



          A formal smooth manifold is a smooth manifold equipped possibly with infinitesimal extension.

          In the differential cohesion of synthetic differential infinity-groupoids these are the spaces locally isomorphic to n×D\mathbb{R}^n \times D, where n\mathbb{R}^n is a Cartesian space and DD is an infinitesimally thickened point. Here n\mathbb{R}^n is the underlying reduced manifold.


          • Anders Kock, Formal manifolds and synthetic theory of jet bundles, Cahiers de Topologie et Géométrie Différentielle Catégoriques (1980) Volume: 21, Issue: 3 (Numdam)

          • Anders Kock, section I.17 and I.19 of Synthetic Differential Geometry, (pdf)

          Formal smooth manifolds of the simple product form X×DX \times D in the category of smooth loci for XX an ordinary smooth manifold and DD and infinitesimal space have been considered in section 4 of

          • Eduardo Dubuc, Sur les modeles de la geometrie differentielle synthetique Cahiers de Topologie et Géométrie Différentielle Catégoriques, 20 no. 3 (1979), p. 231-279 (numdam).

          For more on this see Cahiers topos

          Last revised on November 4, 2018 at 02:15:13. See the history of this page for a list of all contributions to it.