# nLab Killing spinor

Contents

### Context

#### Riemannian geometry

Riemannian geometry

## Applications

#### Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

$\array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }$

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

# Contents

## Idea

A Killing spinor on a (pseudo-)Riemannian manifold $X$ is a spinor – a section of some spinor bundle $v \in \Gamma(S)$ – that is taken by the covariant derivative of the corresponding Levi-Civita connection to a multiple of itself

$\nabla_v \psi = \kappa \gamma_v \psi$

for some constant $\kappa$.

If that constant is 0, hence if the spinor is covariant constant, then one also speaks of a covariant constant spinor or parallel spinor (with respect to the given metric structure).

More generally, a twistor spinor or conformal Killing spinor is a $\psi$ such that

$\nabla_v \psi = \frac{1}{dim(X)} \gamma_v D \psi \,,$

where $D$ is the given Dirac operator (e.g. Baum 00).

A Killing spinor with non-vanishing $\kappa$ may be understood as a genuine covariantly constant spinor, but with respect to a super-Cartan geometry modeled not on super-Euclidean space/super-Minkowski spacetime, but on its spherical/hyperbolic or deSitter/anti-deSitter versions (Egeileh-Chami 13, p. 60 (8/8)).

Similarly a Killing vector is a covariantly constant vector field.

Pairing two covariant constant spinors to a vector yields a Killing vector.

In supergravity, super spacetimes which solves the equations of motion and admit Killing spinors are BPS states (at least if they are asymptotically flat and of finite mass).

### General

Lecture notes include

• Parallel and Killing spinor fields (pdf)

• Helga Baum, Twistor and Killing spinors in Lorentzian geometry, Séminaires & Congrès, 4, 2000 (pdf)

• Helga Baum, Conformal Killing spinors and the holonomy problem in Lorentzian geometry (pdf)

Discussion relating to Killing vectors in supergeometry (superisometries) is in

and later in

• Christian Bär, Real Killing spinors and holonomy, Comm. Math. Phys.

Volume 154, Number 3 (1993), 509-521 (Euclid)

Discussion regarding the conceptualization of Killing spinors in super-Cartan geometry is in

• Michel Egeileh, Fida El Chami, Some remarks on the geometry of superspace supergravity, J.Geom.Phys. 62 (2012) 53-60 (spire)

Discussion relating to special holonomy includes

Discussion of classification includes

• Thomas Friedrich, Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeiten Czechoslavakian-GDR-Polish scientific school on differential geometry Boszkowo/ Poland 1978, Sci. Comm., Part 1,2; 104-124 (1979)

• Thomas Friedrich, Zur Existenz paralleler Spinorfelder über Riemannschen Mannigfaltigkeiten, Colloquium Mathematicum vol. XLIV, Fasc. 2 (1981), 277-290.

### Relation to supersymmetry

General discussion of Killing with an eye towards applications in supersymmetry is around page 907 in volume II of

specifically