For a natural number, a -dimensional Riemannian manifold is a hyperkähler manifold if its holonomy group is (a subgroup of) the quaternionic unitary group Sp(n). Regarded as a subgroup of the central product group Sp(n).Sp(1) this means that hyper-Kähler manifolds are special cases of quaternion-Kähler manifolds, though the latter are often taken to be only those Riemannian manifolds with full Sp(n).Sp(1)-holonomy.
Equivalently, a hyperkähler manifold is a Riemannian manifold with three complex structures which are Kähler with respect to the metric and satisfy the quaternionic identities
classification of special holonomy manifolds by Berger's theorem:
(Leung 02)
Every hyperkähler manifold induces a Rozansky-Witten weight system with coefficients in certain Dolbeault cohomology-groups. For compact hyperkähler manifolds there are induced Rozansky-Witten weight system with values in the ground field, hence actual weight systems.
The only known examples of compact hyperkähler manifolds are Hilbert schemes of points (for ) for either
a 4-torus (in which case the compact hyperkähler manifolds is really the fiber of )
(Beauville 83) and two exceptional examples (O’Grady 99, O’Grady 03 ), see Sawon 04, Sec. 5.3.
Both the Coulomb branch and the Higgs branch of D=3 N=4 super Yang-Mills theories are hyperkähler manifolds (Seiberg-Witten 96, see e.g. dBHOO 96). In special cases they are compact hyperkähler manifolds (Intriligator 99).
Kähler manifold, hyper-Kähler manifold, quaternionic Kähler manifold
See also
Arnaud Beauville, Variétés Kähleriennes dont la premiere classe de Chern est nulle, Jour.
Diff. Geom. 18 (1983), 755–782 (euclid.jdg/1214438181)
Kieran O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512 (1999), 49–117 (arXiv:alg-geom/9708009, arXiv:math/9805099)
Kieran O’Grady, A new six dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), 435-505 (arXiv:math/0010187)
Daniel Huybrechts, Compact Hyperkähler Manifolds, In: Ellingsrud G., Ranestad K., Olson L., Strømme S.A. (eds.) Calabi-Yau Manifolds and Related Geometries, Universitext. Springer, Berlin, Heidelberg 2003 (doi:10.1007/978-3-642-19004-9_3,
With an eye towards Rozansky-Witten theory (ground field-valued Rozansky-Witten weight systems):
Justin Roberts, Simon Willerton, p. 17 of: On the Rozansky-Witten weight systems, Algebr. Geom. Topol. 10 (2010) 1455-1519 (arXiv:math/0602653)
Justin Sawon, Section 5.3 of: Rozansky-Witten invariants of hyperkähler manifold, Cambridge 2000 (arXiv:math/0404360)
The example of Coulomb branches of D=3 N=4 super Yang-Mills theory originates with
Last revised on July 14, 2021 at 13:24:45. See the history of this page for a list of all contributions to it.