geometric representation theory
representation, 2-representation, ∞-representation
Grothendieck group, lambda-ring, symmetric function, formal group
principal bundle, torsor, vector bundle, Atiyah Lie algebroid
Eilenberg-Moore category, algebra over an operad, actegory, crossed module
Be?linson-Bernstein localization?
vector bundle, 2-vector bundle, (∞,1)-vector bundle
real, complex/holomorphic, quaternionic
In the definition of torsors and principal bundles one deals with group action objects (generally over some base object ) whose shear map is an isomorphism:
Now if is inhabited (fiber-wise over ), this implies a (fiber-wise) free and transitive (hence regular) action, which is typically what is understood to characterize torsors/principal bundles.
However, the condition alone that the shear map (1) be an isomorphism makes sense (and is then automatically satisfied) also for locally empty , meaning for fibers of being strict initial objects (internal to the ambient category). If that case is meant to be included, one speaks, following Grothendieck, alternatively of:
a formally principal action (Grothendieck 60, p. 312 (15 of 30))
a pseudo-torsor (Grothendieck 67, EGA IV.4, 16.5.15)
a formally principal homogeneous action (ibid. & Grothendieck 71, p. 9 (293)).
Examples of references using this terminology: StacksProject, Moret-Bailly 13, slide 5, BGA 13, p. 73-74.
Even if a -equivariant principal bundle is an actual torsor (in topological G-spaces sliced over a given base, SS 2021, Def. 2.1.3) its fixed loci will generally only be (similarly internal) pseudo-torsors. (For more see SS 2021, Rem. 2.18).
Internal to some ambient category with finite limits, let
Then the following are equivalent:
is the -quotient coprojection;
is an effective epimorphism.
The first condition is equivalent to
being a coequalizer, the second to
being a coequalizer. But the pseudo-principality condition says that we have an isomorphism (the shear map)
which identifies these two diagrams.
The term seems to be due to:
Alexander Grothendieck, p. 312 (15 of 30) in: Technique de descente et théorèmes d’existence en géométrie algébrique. I. Généralités. Descente par morphismes fidèlement plats, Séminaire N. Bourbaki exp. no190 (1960) 299-327 [numdam:SB_1958-1960__5__299_0]
Alexander Grothendieck, 16.5.15 in: Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas (Quatrième partie), Publications mathématiques de l’I.H.É.S., tome 32 (1967), p. 5-361 (numdam:PMIHES_1967__32__5_0)
Alexander Grothendieck, p. 9 of Exemples et Complements (doi:10.1007/BFb0058666, pdf), which is p. 293 in:
Alexander Grothendieck, Michèle Raynaud, Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Mathematics 224, Springer 1971 (arXiv:math/0206203, doi:10.1007/BFb0058656)
See also:
The Stacks Project, Pseudo G-Torsor (Definition 03AH, Definition 0498)
Laurent Moret-Bailly, slide 5 of: Principal Bundles over Valued Fields, Oberwolfach 2013 (pdf, pdf)
Alessandra Bertapelle, Cristian D. Gonzalez-Aviles, The Greenberg functor revisited, European Journal of Mathematics volume 4, pages 1340–1389 (2018) (arXiv:1311.0051, doi:10.1007/s40879-017-0210-0)
Last revised on April 16, 2023 at 16:00:01. See the history of this page for a list of all contributions to it.