higher geometry / derived geometry
Ingredients
Concepts
geometric little (∞,1)-toposes
geometric big (∞,1)-toposes
Constructions
Examples
derived smooth geometry
Theorems
Let $X$ be a 4-manifold which is connected and oriented.
The Pontryagin-Thom construction as above gives for $n \in \mathbb{Z}$ the commuting diagram of sets
where $\pi^\bullet$ denotes cohomotopy sets, $H^\bullet$ denotes ordinary cohomology, $H_\bullet$ denotes ordinary homology and $\mathbb{F}_\bullet$ is normally framed cobordism classes of normally framed submanifolds. Finally $h^n$ is the operation of pullback of the generating integral cohomology class on $S^n$ (by the nature of Eilenberg-MacLane spaces):
Now
$h^0$, $h^1$, $h^4$ are isomorphisms
$h^3$ is an isomorphism if $X$ is “odd” in that it contains at least one closed oriented surface of odd self-intersection, otherwise $h^3$ becomes an isomorphism on a $\mathbb{Z}/2$-quotient group of $\pi^3(X)$ (which is a group via the group-structure of the 3-sphere (SU(2)))
All PL 4-manifolds are simple branched covers of the 4-sphere:
Riccardo Piergallini, Four-manifolds as 4-fold branched covers of $S^4$, Topology Volume 34, Issue 3, July 1995 (doi:10.1016/0040-9383(94)00034-I, pdf)
Massimiliano Iori, Riccardo Piergallini, 4-manifolds as covers of the 4-sphere branched over non-singular surfaces, Geom. Topol. 6 (2002) 393-401 (arXiv:math/0203087)
On cohomotopy of 4-manifolds:
Daniel Freed, Karen Uhlenbeck, Appendix B of: Instantons and Four-Manifolds, Mathematical Sciences Research Institute Publications, Springer 1991 (doi:10.1007/978-1-4613-9703-8)
Robion Kirby, Paul Melvin, Peter Teichner, Cohomotopy sets of 4-manifolds, GTM 18 (2012) 161-190 (arXiv:1203.1608)
Last revised on December 20, 2020 at 22:02:20. See the history of this page for a list of all contributions to it.