homotopy theory, (∞,1)-category theory, homotopy type theory
flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed…
models: topological, simplicial, localic, …
see also algebraic topology
Introductions
Definitions
Paths and cylinders
Homotopy groups
Basic facts
Theorems
group cohomology, nonabelian group cohomology, Lie group cohomology
cohomology with constant coefficients / with a local system of coefficients
differential cohomology
Where homotopy groups are groups of homotopy classes of maps out spheres, $\pi_n(X)\coloneqq [S^n \to X]$, cohomotopy groups are groups of homotopy classes into spheres, $\pi^n(X) \coloneqq [X \to S^n]$.
If instead one considers mapping into the stabilization of the spheres, hence into (some suspension of) the sphere spectrum, then one speaks of stable cohomotopy. In other words, the generalized (Eilenberg-Steenrod) cohomology theory which is represented by the sphere spectrum is stable cohomotopy.
In this vein, regarding terminology: the concept of cohomology (as discussed there) in the very general sense of non-abelian cohomology, is about homotopy classes of maps into any object $A$ (in some (∞,1)-topos). In this way, general non-abelian cohomology is sort of dual to homotopy, and hence might generally be called co-homotopy. This is the statement of Eckmann-Hilton duality. The duality between homotopy (groups) and co-homotopy proper may then be thought of as being the special case of this where $A$ is taken to be a sphere.
relation to the Freudenthal suspension theorem (Spanier 49, section 9)
For $X$ a compact smooth manifold, there is a smooth function $X \to S^n$ representing every cohomotopy class (with respect to the standard smooth structure on the sphere manifold).
Wikipedia, Cohomotopy group
Edwin Spanier, Borsuk’s Cohomotopy Groups, Annals of Mathematics Second Series, Vol. 50, No. 1 (Jan., 1949), pp. 203-245 (jstor)