nLab KSC-theory

Redirected from "affine set".
Contents

Context

Cohomology

cohomology

Special and general types

Special notions

Variants

Extra structure

Operations

Theorems

Stable Homotopy theory

Representation theory

Contents

Idea

What is called self-conjugate K-theory of spaces XX (Anderson 64) is KR-theory on real spaces of the form X×S 0,2X \times S^{0,2}, where the second factor denotes the circle equipped with the antipodal 2\mathbb{Z}_2-action (see at real space for the notation).

Applications

In the context of type II string theory on orientifolds KSCKSC-theory is the cohomology theory in which the RR-fields of the I˜\tilde I-variant of type I superstring theory are cocycles (Witten 98, DMR 13, section 3.3.)

cohomology theories of string theory fields on orientifolds

string theoryB-fieldBB-field moduliRR-field
bosonic stringline 2-bundleordinary cohomology H 3H\mathbb{Z}^3
type II superstringsuper line 2-bundlePic(KU)// 2Pic(KU)//\mathbb{Z}_2KR-theory KR KR^\bullet
type IIA superstringsuper line 2-bundleBGL 1(KU)B GL_1(KU)KU-theory KU 0KU^0
type IIB superstringsuper line 2-bundleBGL 1(KU)B GL_1(KU)KU-theory KU 1KU^1
type I superstringsuper line 2-bundlePic(KU)// 2Pic(KU)//\mathbb{Z}_2KO-theory KOKO
type I˜\tilde I superstringsuper line 2-bundlePic(KU)// 2Pic(KU)//\mathbb{Z}_2KSC-theory KSCKSC

References

The definition of KSc theory is due to

  • D. W. Anderson, The real K-theory of classifying spaces Proc. Nat. Acad. Sci. U. S. A., 51(4):634–636, 1964.

Discussion of applications to superstring theory on orientifolds:

Last revised on October 18, 2024 at 20:32:39. See the history of this page for a list of all contributions to it.