nLab Liouville-Poincaré 1-form

Redirected from "Poincare form".
Contents

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Definition

For XX a smooth manifold and T *XXT^* X \to X its cotangent bundle, there is a unique differential 1-form on T *XT^* X itself,

θΩ 1(T *X) \theta \in \Omega^1(T^* X)

with the property that under the isomorphism

j:Γ(T *X)Ω 1(X) j \;\colon\; \Gamma(T^* X) \stackrel{\simeq}{\to} \Omega^1(X)

between differential 1-forms and smooth sections of the cotangent bundle we have for every smooth section σΓ(T *X)\sigma \in \Gamma(T^* X) the identification

σ *θ=j(σ) \sigma^* \theta = j(\sigma)

between the pullback of θ\theta along σ\sigma and the 1-form corresponding to σ\sigma under jj.

This unique differential 1-form θΩ 1(T *X)\theta \in \Omega^1(T^* X) is called the Liouville form or Poincaré 1-form or canonical form or tautological form on the cotangent bundle.

The de Rham differential ωdθ\omega \coloneqq d \theta is a symplectic form. Hence every cotangent bundle is canonically a symplectic manifold.

On a coordinate chart n\mathbb{R}^n of XX with canonical coordinate functions denoted (x i)(x^i), the cotangent bundle over the chart is T * n n× nT^\ast \mathbb{R}^n \simeq \mathbb{R}^n \times \mathbb{R}^n with canonical coordinates ((x i),(p j))((x^i), (p_j)). In these coordinates the canonical 1-form is (using Einstein summation convention)

θ=p idx i \theta = p_i d x^i

and hence the symplectic form is

ω=dp idq i. \omega = d p_i \wedge d q^i \,.

Last revised on August 28, 2024 at 16:38:04. See the history of this page for a list of all contributions to it.