nLab quantum affine algebra

Contents

Context

Lie theory

∞-Lie theory (higher geometry)

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras

Algebra

Contents

References

Ordinary

  • Igor Frenkel, Naihuan Jing, Vertex representations of quantum affine algebras, Proc. Nat’l. Acad. Sci. USA 85 (1988) , 9373–9377.

  • Naihuan Jing, Twisted vertex representations of quantum affine algebras, Invent. Math. 102 (1990), 663–690.

  • Naihuan Jing, Quantum Kac-Moody Algebras and Vertex Representations (arXiv:math/9802036)

Categorified

Discussion of categorification of quantum Kac-Moody algebras is in:

  • Raphael Rouquier, 2-Kac-Moody algebras (arXiv:0812.5023)

  • Aaron Lauda, Diagrammatic categorification of quantum

    groups III: categorifying quantum Kac-Moody algebras_ (2010) (pdf)

  • Seok-Jin Kang, Se-jin Oh, Euiyong Park, Categorification of Quantum Generalized Kac-Moody Algebras and Crystal Bases (arXiv:1102.5165)

  • David Hill, Weiqiang Wang, Categorification of quantum Kac-Moody superalgebras (arXiv:1202.2769)

Last revised on August 8, 2019 at 15:27:36. See the history of this page for a list of all contributions to it.