nLab Cartan's homotopy formula

Redirected from "Cartan's magic formula".
Contents

Context

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

infinitesimal cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Statement

Let MM be a differentiable manifold, XX a vector field on MM, and X\mathcal{L}_X the Lie derivative along XX. Denote the contraction of a vector field and a differential form ω\omega by ι(X)(ω)\iota(X)(\omega).

Then the Cartan’s infinitesimal homotopy formula, nowdays called simply Cartan’s homotopy formula or even Cartan formula, says

Xω=dι(X)ω+ι(X)dω \mathcal{L}_X \omega = d \iota(X)\omega + \iota(X) d\omega

The word “homotopy” is used because it supplies a homotopy operator for some manipulation with chain complexes in de Rham cohomology. Cartan’s homotopy formula is part of Cartan calculus.

See also noncommutative differential calculus where the formula is incorporated into the notion of Batalin-Vilkovisky module over a Gerstenhaber algebra.

References

The original reference:

  • Élie Cartan, Leçons sur les invariants intégraux (based on lectures given in 1920-21 in Paris, Hermann, Paris 1922, reprinted in 1958).

See also:

  • Masoud Khalkhali, On Cartan homotopy formulas in cyclic homology, Manuscripta mathematica 94:1, pp 111-132 (1997) doi

Last revised on April 4, 2021 at 05:55:42. See the history of this page for a list of all contributions to it.