# nLab Lie derivative

Contents

### Context

#### Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

• (shape modality $\dashv$ flat modality $\dashv$ sharp modality)

$(\esh \dashv \flat \dashv \sharp )$

• dR-shape modality$\dashv$ dR-flat modality

$\esh_{dR} \dashv \flat_{dR}$

infinitesimal cohesion

tangent cohesion

differential cohesion

singular cohesion

$\array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }$

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

#### $\infty$-Lie theory

Background

Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids

Cohomology

Homotopy

Related topics

Examples

$\infty$-Lie groupoids

$\infty$-Lie groups

$\infty$-Lie algebroids

$\infty$-Lie algebras

# Contents

## Idea

Given a smooth manifold $M$ and a vector field $X \in \Gamma(T M)$ on it, one defines a series of operators $\mathcal{L}_X$ on spaces of differential forms, of functions, of vector fields and multivector fields. For functions $\mathcal{L}_X(f) = X(f)$ (derivative of $f$ along an integral curve of $X$); as multivector fields and forms can not be compared in different points, one pullbacks or pushforwards them to be able to take a derivative.

For vector fields $\mathcal{L}_X Y = [X,Y]$. If $\omega \in \Omega^\bullet(M)$ is a differential form on $M$, the Lie derivative $\mathcal{L}_X \omega$ of $\omega$ along $X$ is the linearization of the pullback of $\omega$ along the flow $\exp(X -) : \mathbb{R} \times M\to M$ induced by $X$

$\mathcal{L}_X \omega = \frac{d}{d t}|_{t = 0} \exp(t X)^*(\omega) \,.$

Denote by $\iota_X : \Omega^\bullet(M) \to \Omega^{\bullet -1}(M)$ be the graded derivation which is the contraction with a vector field $X$. By Cartan's homotopy formula,

$\mathcal{L}_v = [d_{dR}, \iota_v] = d_{dR} \circ \iota_v + \iota_v \circ d_{dR} : \Omega^\bullet(X) \to \Omega^\bullet(X) \,.$

## References

Cartan introduced Lie derivatives of differential forms and derived Cartan's magic formula in

• Élie Cartan, Leçons sur les invariants intégraux (based on lectures given in 1920-21 in Paris, Hermann, Paris 1922, reprinted in 1958).

Extension to arbitrary tensor fields was given in

• W. Ślebodziński, Sur les équations de Hamilton, Bull. Acad. Roy. de Belg. 17 (1931).

The term “Lie derivative” (Liesche Ableitung) is due to van Dantzig, who also suggested a definition using the flow of a vector field:

• D. van Dantzig, Zur allgemeinen projektiven Differentialgeometrie, Proc. Roy. Acad. Amsterdam 35 (1932) Part I: 524–534; Part II: 535–542.

An introduction in the context of synthetic differential geometry is in

• Gonzalo Reyes, Lie derivatives, Lie brackets and vector fields over curves, pdf

A gentle elementary introduction for mathematical physicists

• Bernard F. Schutz, Geometrical methods of mathematical physics (elementary intro) amazon, google

.

Last revised on April 4, 2021 at 04:21:16. See the history of this page for a list of all contributions to it.