algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)
quantum mechanical system, quantum probability
interacting field quantization
superalgebra and (synthetic ) supergeometry
The Nicolai map is a (non-local and non-linear) transformation of bosonic quantum fields to free fields whose existence characterizes the original bosonic quantum field theory as arising by integrating out the fermions of a globally supersymmetric field theory.
The original discussion:
Hermann Nicolai, On a new characterization of scalar supersymmetric theories, Physics Letters B 89 3–4 (1980) Pages 341-346 [doi:10.1016/0370-2693(80)90138-0]
Hermann Nicolai, Supersymmetry and functional integration measures, Nuclear Physics B
176 2 (1980) 419-428 [doi:10.1016/0550-3213(80)90460-5]
Hermann Nicolai, Supersymmetric functional integration measures, NATO Advanced Study Institute on Supersymmetry, Bonn (Aug 1984) 393-420 [cds:155731]
The infinitesimal version:
Olaf Lechtenfeld, Konstruktion der Nicolai-Abbildung in supersymmetrischen Feldtheorien, PhD thesis, Bonn (1984) [pdf, pdf]
K. Dietz, Olaf Lechtenfeld, Nicolai maps and stochastic observables from a coupling constant flow, Nuclear Physics B 255 (1985) 149-173 [doi:10.1016/0550-3213(85)90132-4]
K. Dietz, Olaf Lechtenfeld, Ghost-free quantisation of non-abelian gauge theories via the Nicolai transformation of their supersymmetric extensions, Nuclear Physics B 259 2–3 (1985) 397-411 [doi:10.1016/0550-3213(85)90642-X]
Olaf Lechtenfeld, Stochastic variables in ten dimensions?, Nuclear Physics B 274 3–4 (1986) 633-652 [doi:10.1016/0550-3213(86)90531-6]
Rainald Flume, Olaf Lechtenfeld, On the stochastic structure of globally supersymmetric field theories, Physics Letters B 135 1–3 (1984) 91-95 [doi:10.1016/0370-2693(84)90459-3]
Construction in terms of a path-ordered integral:
Olaf Lechtenfeld, Maximilian Rupprecht, Universal form of the Nicolai map, Phys. Rev. D 104 021701 (2021) [arXiv:2104.00012, doi:10.1103/PhysRevD.104.L021701]
Olaf Lechtenfeld, Maximilian Rupprecht, Is the Nicolai map unique?, J. High Energ. Phys. 2022 139 (2022) [arXiv:2207.09471, doi:10.1007/JHEP09(2022)139]
On its non-perturbative nature:
835 (2022) 137507 [arXiv:2208.06420, doi:10.1016/j.physletb.2022.137507]
Review:
On the Nicolai map for the sigma-model:
For D=4 SYM and D=10 SYM in light cone gauge:
For super Yang-Mills theory in light cone gauge:
See also:
Last revised on September 30, 2024 at 05:48:34. See the history of this page for a list of all contributions to it.