In type IIA string theory an O4-plane is an orientifold plane (“O-plane”) of dimension , hence of the same dimension as D4-branes, but carrying opposite D-brane charge.
Under duality between M-theory and type IIA string theory, for KK-compactification along a circle-fiber parallel to an MO5-plane, a plain MO5-plane in M-theory becomes the O4-plane, specifically the -plane, while an MO5 with an M5-brane on top of it becomes the -plane (Gimon 9, Sec. III8,Hanany-Kol 00, Sec. 3.1).
(…)
Relation of the MO5-plane to the O4-plane under duality between M-theory and type IIA string theory:
Eric G. Gimon, On the M-theory Interpretation of Orientifold Planes (arXiv:hep-th/9806226, spire:472499)
Amihay Hanany, Barak Kol, Section 3.1 in: On Orientifolds, Discrete Torsion, Branes and M Theory, JHEP 0006 (2000) 013 (arXiv:hep-th/0003025)
string phenomenology on intersecting D4-branes on O4-planes geometrically engineering QFTs close to the standard model of particle physics:
D. Bailin, G. V. Kraniotis, A. Love, Standard-like models from intersecting D4-branes, Phys. Lett. B530 (2002) 202-209 (arXiv:hep-th/0108131)
H. Kataoka, M. Shimojo, Chiral Models from Intersecting D4-/D5-branes, Progress of Theoretical Physics, Volume 107, Issue 6, June 2002, Pages 1291–1296 (arXiv:hep-th/0112247, doi:10.1143/PTP.107.1291)
D. Bailin, Standard-like models from D-branes, J Phys (2003) 60: 199 (arXiv:hep-th/0210227)
D. Bailin, G. V. Kraniotis, A. Love, New Standard-like Models from Intersecting D4-Branes, Phys. Lett. B547 (2002) 43-50 (arXiv:hep-th/0208103)
(…)
Last revised on September 10, 2019 at 19:10:03. See the history of this page for a list of all contributions to it.