nLab D1-brane




The D-brane of dimension 1+11+1 in type IIB string theory. Also called the D-string, to be distinguished from the fundamental string.


S-duality with the fundamental string

Under S-duality the D1-brane mixes with the fundamental string to form the (p,q)-string.

A formalization of this in terms of the homotopy theory of the super L-infinity algebras which constitute the respective extended super spacetimes is in (FSS 13).

Bound states

bound states/brane intersections involving D1-branes:

Black hole entropy

At low string coupling D1-D5 brane bound states are described by 2d CFT, which is well understood. After passage to the corresponding strongly coupled black brane configurations in type IIB supergravity, which are black holes in the given compactification, the entropy of these 2d CFTs matches the Bekenstein-Hawking entropy of these black holes. See at black holes in string theory for more on this.

This is parts of the AdS/CFT correspondence. See (AGMOO, chapter 5).

Table of branes appearing in supergravity/string theory (for classification see at brane scan).

branein supergravitycharged under gauge fieldhas worldvolume theory
black branesupergravityhigher gauge fieldSCFT
D-branetype IIRR-fieldsuper Yang-Mills theory
(D=2n)(D = 2n)type IIA\,\,
D0-brane\,\,BFSS matrix model
D4-brane\,\,D=5 super Yang-Mills theory with Khovanov homology observables
D6-brane\,\,D=7 super Yang-Mills theory
(D=2n+1)(D = 2n+1)type IIB\,\,
D1-brane\,\,2d CFT with BH entropy
D3-brane\,\,N=4 D=4 super Yang-Mills theory
(D25-brane)(bosonic string theory)
NS-branetype I, II, heteroticcircle n-connection\,
string\,B2-field2d SCFT
NS5-brane\,B6-fieldlittle string theory
D-brane for topological string\,
M-brane11D SuGra/M-theorycircle n-connection\,
M2-brane\,C3-fieldABJM theory, BLG model
M5-brane\,C6-field6d (2,0)-superconformal QFT
M9-brane/O9-planeheterotic string theory
topological M2-branetopological M-theoryC3-field on G2-manifold
topological M5-brane\,C6-field on G2-manifold
membrane instanton
M5-brane instanton
D3-brane instanton
solitons on M5-brane6d (2,0)-superconformal QFT
self-dual stringself-dual B-field
3-brane in 6d


The Green-Schwarz sigma-model description of (p,q)(p,q)-1-branes via cocycles on extended super Minkowski spacetimes is obtained in

  • Makoto Sakaguchi, section 2 of IIB-Branes and New Spacetime Superalgebras, JHEP 0004 (2000) 019 (arXiv:hep-th/9909143)

See also

Formulation of the S-duality with the fundamental string in terms of the homotopy theory of super L-infinity algebras of the respective extended super spacetimes is in section 4.3 of

Last revised on November 23, 2019 at 17:47:56. See the history of this page for a list of all contributions to it.