Hořava-Witten theory


String theory



physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes

theory (physics), model (physics)

experiment, measurement, computable physics



There is an observation by Hořava–Witten 95, Hořava–Witten 96 which suggests that quantum 11-dimensional supergravity on an 2\mathbb{Z}_2-orbifold (actually a higher orientifold) of the form X 10×(S 1// 2))X_{10} \times (S^1//\mathbb{Z}_2)) induces on its boundaryM9-brane” (the 2\mathbb{Z}_2-fixed point manifold) heterotic string theory. Therefore one also speaks of “heterotic M-theory” (Ovrut 02).

from Kashima 00

Here each of the two copies of the heterotic gauge theory is a “hidden sector” with respect to the other.

The orbifold equivariance condition of the supergravity C-field is that discussed at orientifold (there for the B-field). Therefore it has to vanish at the two fixed fixed points of the 2\mathbb{Z}_2-action. Thereby the quantization condition

[2G 4]=2[c 2][12p 1] [2G_4] = 2 [c_2] - [\frac{1}{2} p_1]

on the supergravity C-field becomes the condition for the Green-Schwarz mechanism of the heterotic string theory on the “boundary” (the orbifold fixed points).


Boundary conditions

The supergravity C-field G^ 4\hat G_4 is supposed to vanish, and differentially vanish at the boundary in the HW model, meaning that also the local connection 3-form C 3C_3 vanishes there. The argument is roughly as follows (similar for as in Falkowski, section 3.1).

The higher Chern-Simons term

C 3C 3G 4G 4 C_3 \mapsto C_3 \wedge G_4 \wedge G_4

in the Lagrangian of 11-dimensional supergravity is supposed to be well-defined on fields on the orbifold and hence is to be 2\mathbb{Z}_2-invariant.

Let ι 11\iota_{11} be the canonical vector field along the circle factor. Then the component of GGG \wedge G which is annihilated by the contraction ι 11\iota_{11} is necessarily even, so the component dx 11ι 11C 3d x^{11}\wedge \iota_11 C_3 is also even. It follows that also dx 11ι 11G 4d x^{11}\wedge \iota_11 G_4 is even.

Moreover, the kinetic term

CGG C \mapsto G \wedge \star G

is to be invariant. With the above this now implies that the components of GG annihiliated by ι 11\iota_{11} is odd, because so is the mixed component of the metric tensor.

This finally implies that the restriction of C 3C_3 to the orbifold fixed points has to be closed.


The original articles are

Reviews are in

The black M2-brane solution in HW-theory, supposedly yielding the black heterotic string at the intersection with the M9-brane is discussed in

  • Zygmunt Lalak, André Lukas, Burt Ovrut, Soliton Solutions of M-theory on an Orbifold, Phys. Lett. B425 (1998) 59-70 (arXiv:hep-th/9709214)

  • Ken Kashima, The M2-brane Solution of Heterotic M-theory with the Gauss-Bonnet R 2R^2 terms, Prog.Theor.Phys. 105 (2001) 301-321 (arXiv:hep-th/0010286)

Explicit discussion of worldvolume CFT of the M2-branes ending on the HW fixed points and becoming heterotic strings is discussed, via the BLG model, in

After KK-reduction to 5d supergravity there is a corresponding 5d mechanism, see the references there.

Last revised on April 17, 2018 at 03:14:57. See the history of this page for a list of all contributions to it.