nLab extremally disconnected topological space

Contents

Context

Topology

topology (point-set topology, point-free topology)

see also differential topology, algebraic topology, functional analysis and topological homotopy theory

Introduction

Basic concepts

Universal constructions

Extra stuff, structure, properties

Examples

Basic statements

Theorems

Analysis Theorems

topological homotopy theory

Contents

Definition

Definition

A topological space is called extremally disconnected if the closure of any open subset is still an open subset, or, equivalently, the closures of disjoint open subsets are disjoint.

Properties

The extremally disconnected spaces can be characterized among the Hausdorff spaces by the fact that any continuous function mapping a dense subspace of an extremally disconnected space to a compact Hausdorff space, can be extended to the whole space. They can also be characterized among the completely regular spaces by the fact that the lattice of continuous functions mapping an extremally dis connected space to the unit interval is complete (cf. (Giliman-Jerison, 1960), 3N and 6M). (Strauss 1967)

As projective objects

Theorem

(Gleason 1958)
Extremally disconnected topological spaces are precisely the projective objects in the category of compact Hausdorff topological spaces, and in fact in the category of regular Hausdorff topological spaces and proper maps between them.

See e.g. (Bhatt-Scholze 13, below theorem 1.8). For the second part see (Strauss 1967).

Proposition

For RR a w-contractible ring, the profinite set π 0(SpecR)\pi_0(Spec R) is an extremally disconnected profinite set.

Part of (Bhatt-Scholze 13, theorem 1.8).

In terms of logic

Remark

The extremal disconnectedness of a space is correlated with the property that the frame of its open subsets is a De Morgan Heyting algebra hence with the validity of the De Morgan law in logic, since a result by Johnstone says that a topos Sh(X)Sh(X) of sheaves on a topological space XX is a De Morgan topos precisely when XX is extremally disconnected and this implies that all subobject lattices sub(X)sub(X) are De Morgan Heyting algebras, in particular sub(1)sub(1) corresponding to the frame of opens of XX (cf. De Morgan topos for details and references).

As a lifting property

Being extremally disconnected is equivalently a lifting property with respect to a surjective proper morphism of finite topological spaces (for more see the discussion at separation axioms in terms of lifting properties):

Namely that a topological space XX is extremally disconnected means equivalently that it solves the following lifting problems (from here):

Here boxes indicate open subsets in a finite topological space, and an arrow xcx\to c means that cc is in the closure of xx. See at Background and notation for more.

One may deduce Gleason’s theorem (Prop. ) in terms of these lifting properties:

Both being surjective and being proper are right lifting properties. Hence, the existence of a weak factorization system generated by this morphism implies that each space admits a surjective proper map from an extremally disconnected space.

For more see at separation axioms in terms of lifting properties the section extremally disconnected spaces being projective.

Examples

Example

For SS any set regarded as a discrete topological space, its Stone-Cech compactification is extremally disconnected.

(e.g. Bhatt-Scholze 13, example 2.4.6)

Counter-Example

The profinite set underlying the p-adic integers, regarded as a Stone space, is not extremally disconnected.

(e.g. Bhatt-Scholze 13, example 2.4.7)

References

The result on projective spaces stems from

Textbook account:

Discussion in the context of the pro-etale site:

Last revised on October 17, 2021 at 18:33:11. See the history of this page for a list of all contributions to it.