# nLab first-countable space

First-countable spaces

# First-countable spaces

## Idea

A space (such as a topological space) is first-countable if, in a certain sense, there is only a countable amount of information locally in its topology. (Change ‘locally’ to ‘globally’ to get a second-countable space.)

## Definitions

###### Definition

A topological space is first-countable if every point $x$ has a countable local basis $B_x$.

## Generalizations

The character of a space at a point $x$ is the minimum of the cardinalities of the possible bases $B_x$. We are implicitly using the axiom of choice here, to suppose that this set of cardinalities (which really is a small set because bounded above by the number of neighbourhoods of $x$, and inhabited by this number as well) has a minimum. But without Choice, we can still consider this collection of cardinalities.

Then a first-countable space is simply one whose characters are all countable.

The character, tout court, of a space is the supremum of the characters of its points; then a first-countable space is simply one with a countable character.

Axioms: axiom of choice (AC), countable choice (CC).

### Implications

• a metric space has a $\sigma$-locally discrete base

• Nagata-Smirnov metrization theorem

• a second-countable space has a $\sigma$-locally finite base: take the the collection of singeltons of all elements of a countable cover of $X$.

• second-countable spaces are separable: use the axiom of countable choice to choose a point in each set of a countable cover.

• separable spaces satisfy the countable chain condition: given a dense set $D$ and a family $\{U_\alpha : \alpha \in A\}$, the map $D \cap \bigcup_{\alpha \in A} U_\alpha \to A$ assigning $d$ to the unique $\alpha \in A$ with $d \in U_\alpha$ is surjective.

• separable spaces are weakly Lindelöf: given a countable dense subset and an open cover choose for each point of the subset an open from the cover.

• Lindelöf spaces are trivially also weakly Lindelöf.

• a space with a $\sigma$-locally finite base is first countable: obviously, every point is contained in at most countably many sets of a $\sigma$-locally finite base.

• a first-countable space is obviously Fréchet-Urysohn.

• a Fréchet-Uryson space is obviously sequential.

• a sequential space is obviously countably tight.

Last revised on April 5, 2019 at 19:49:17. See the history of this page for a list of all contributions to it.