topology (point-set topology, point-free topology)
see also differential topology, algebraic topology, functional analysis and topological homotopy theory
Basic concepts
fiber space, space attachment
Extra stuff, structure, properties
Kolmogorov space, Hausdorff space, regular space, normal space
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
Examples
Basic statements
closed subspaces of compact Hausdorff spaces are equivalently compact subspaces
open subspaces of compact Hausdorff spaces are locally compact
compact spaces equivalently have converging subnet of every net
continuous metric space valued function on compact metric space is uniformly continuous
paracompact Hausdorff spaces equivalently admit subordinate partitions of unity
injective proper maps to locally compact spaces are equivalently the closed embeddings
locally compact and second-countable spaces are sigma-compact
Theorems
Analysis Theorems
In mathematics typically by default the term “configuration space” of a topological space $X$ refers to the topological space of pairwise distinct points in $X$, also called Fadell's configuration space, for emphasis.
In principle many other kinds of configurations and the spaces these form may be referred to by “configuration space”, notably in physics the usage is in a broader sense, see at configuration space (physics).
Let $X= \mathbb{R}^\infty$. Then
the unordered configuration space of $n$ points in $\mathbb{R}^\infty$ is a model for the classifying space $B \Sigma(n)$ of the symmetric group $\Sigma(n)$;
the ordered configuration space of $n$ points, equipped with the canonical $\Sigma(n)$-action, is a model for the $\Sigma(n)$-universal principal bundle.
Edward Fadell, Lee Neuwirth, Configuration spaces Math. Scand. 10 (1962) 111-118, MR141126, pdf
Craig Westerland, Configuration spaces in geometry and topology, 2011, pdf
Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213–221. MR 0331377 (pdf)
Edward R. Fadell, Sufian Y. Husseini, Geometry and topology of configuration spaces, Springer Monographs in Mathematics (2001), MR2002k:55038, xvi+313 pp.
F. R. Cohen, S. Gitler, On loop spaces of configuration spaces, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1705–1748, MR2002m:55020
On the relation to Goodwillie calculus: