pointed topological space



topology (point-set topology, point-free topology)

see also differential topology, algebraic topology, functional analysis and topological homotopy theory


Basic concepts

Universal constructions

Extra stuff, structure, properties


Basic statements


Analysis Theorems

topological homotopy theory



A pointed topological space is a topological space with a choice of one of its points.

Simplistic as this concept may seem, pointed topological spaces play a central role for instance in algebraic topology as domains for reduced generalized (Eilenberg-Steenrod) cohomology theories and as an ingredient for the definition of spectra.

One reason why pointed topological spaces are important is that the category which they form is an intermediate stage in the stabilization of homotopy theory (the classical homotopy theory of topological spaces) to stable homotopy theory:

The category of pointed topological spaces has a zero object (the point space itself) and the canonical tensor product on pointed spaces is the smash product, which is non-cartesian monoidal category, in contrast to the plain product of topological space.


A pointed topological space is a topological space (X,τ)(X,\tau) equipped with a choice of point xXx \in X. A homomorphism between pointed topological space (X,x)(X,x) (Y,y)(Y,y) is a continuous function f:XYf \colon X \to Y which preserves the chosen basepoits in that f(x)=yf(x) = y.

The category of pointed topological spaces

Stated in the language of category theory, this mean that pointed topological spaces are the pointed objects in the category Top of topological spaces. This is the coslice category Top */Top^{\ast/} of topological spaces “under” the point space *\ast:

an object in Top */Top^{\ast/} is equivalently a continuous function x:*(X,τ)x \colon \ast \to (X,\tau), which is equivalently just a choice of point in XX, and a morphism in Top */Top^{\ast/} is a morphism f:XYf \colon X \to Y in Top (hence a continuous function), such that this triangle diagram commutes

* x y X f Y \array{ && \ast \\ & {}^{\mathllap{x}}\swarrow && \searrow^{\mathrlap{y}} && \\ X && \underset{f}{\longrightarrow} && Y }

which equivalently means that f(x)=yf(x) = y.

Forgetting and adjoining basepoints


The forgetful functor Top */TopTop^{\ast/} \to Top has a left adjoint given by forming the disjoint union space (coproduct in Top) with a point space (“adjoining a base point”), this is denoted by

() +()*:TopTop */. (-)_+ \coloneqq (-) \sqcup \ast \;\colon \; Top \longrightarrow Top^{\ast/} \,.

Wedge sum and Smash product


Given two pointed topoligical spaces (X,x)(X,x) and (Y,y)(Y,y), then:

  1. their Cartesian product in Top */Top^{\ast/} is simply their product topological space X×YX \times Y equipped with the pair of basepoints (X×Y,(x,y))(X\times Y, (x,y));

  2. their coproduct in Top */Top^{\ast/} has to be computed using the second clause in this prop.: since the point *\ast has to be adjoined to the diagram, it is given not by the coproduct in TopTop (which is the disjoint union space), but by the pushout in TopTop of the form:

    * x X y (po) Y XY. \array{ \ast &\overset{x}{\longrightarrow}& X \\ {}^{\mathllap{y}}\downarrow &(po)& \downarrow \\ Y &\longrightarrow& X \vee Y } \,.

    This is called the wedge sum operation on pointed objects.

    This is the quotient topological space of the disjoint union space under the equivalence relation which identifies the two basepoints:

    XY(XY)/(xy) X \vee Y \;\simeq\; (X \sqcup Y)/(x \sim y)

Generally for a set {(X i,x i)} iI\{(X_i,x_i)\}_{i \in I} of pointed topological spaces

  1. their product is formed in Top, as the product topological space with the Tychonoff topology, with the tuple (x i) iIiIX i(x_i)_{i \in I} \in \underset{i \in I}{\prod} X_i of basepoints being the new basepoint;

  2. their coproduct is formed by the colimit in TopTop over the diagram with a basepoint adjoined, and is called the wedge sum iIX i\vee_{i \in I} X_i, which is the quotient topological space of the disjoint union space with all the basepoints identified:

    iIX i(iIX i)/(x ix j) i,jI. \underset{i \in I}{\vee} X_i \;\simeq\; \left(\underset{i \in I}{\sqcup} X_i\right)/(x_i \sim x_j)_{i,j \in I} \,.

For XX a CW-complex, then for every nn \in \mathbb{N} the quotient of its nn-skeleton by its (n1)(n-1)-skeleton is the wedge sum, def. 1, of nn-spheres, one for each nn-cell of XX:

X n/X n1iI nS n. X^n / X^{n-1} \simeq \underset{i \in I_n}{\vee} S^n \,.

The smash product of pointed topological spaces is the functor

()():Top */×Top */Top */ (-)\wedge(-) \;\colon\; Top^{\ast/} \times Top^{\ast/} \longrightarrow Top^{\ast/}

given by

XY*XY(X×Y), X \wedge Y \;\coloneqq\; \ast \underset{X\sqcup Y}{\sqcup} (X \times Y) \,,

hence by the pushout in TopTop of he frm

XY (id X,y),(x,id Y) X×Y (po) * XY. \array{ X \sqcup Y &\overset{(id_X,y),(x,id_Y) }{\longrightarrow}& X \times Y \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& X \wedge Y } \,.

In terms of the wedge sum from def. 1, this may be written concisely as the quotient space (this def) of the product topological space by the subspace constituted by the wedge sum

XYX×YXY. X \wedge Y \simeq \frac{X\times Y}{X \vee Y} \,.

t \,

symbolnamecategory theory
X×YX \times Yproduct spaceproduct in Top */Top^{\ast/}
XYX \vee Ywedge sumcoproduct in Top */Top^{\ast/}
XY=X×YXYX \wedge Y = \frac{X \times Y}{X \vee Y}smash producttensor product in Top */Top^{\ast/}

For X,YTopX, Y \in Top, with X +,Y +Top */X_+,Y_+ \in Top^{\ast/}, def. 1, then

  • X +Y +(XY) +X_+ \vee Y_+ \simeq (X \sqcup Y)_+;

  • X +Y +(X×Y) +X_+ \wedge Y_+ \simeq (X \times Y)_+.


By example 1, X +Y +X_+ \vee Y_+ is given by the colimit in TopTop over the diagram

* X * * Y. \array{ && && \ast \\ && & \swarrow && \searrow \\ X &\,\,& \ast && && \ast &\,\,& Y } \,.

This is clearly A*BA \sqcup \ast \sqcup B. Then, by definition 2

X +Y + (X*)×(X*)(X*)(Y*) X×YXY*XY* X×Y*. \begin{aligned} X_+ \wedge Y_+ & \simeq \frac{(X \sqcup \ast) \times (X \sqcup \ast)}{(X\sqcup \ast) \vee (Y \sqcup \ast)} \\ & \simeq \frac{X \times Y \sqcup X \sqcup Y \sqcup \ast}{X \sqcup Y \sqcup \ast} \\ & \simeq X \times Y \sqcup \ast \,. \end{aligned}

Let I[0,1]I \coloneqq [0,1] \subset \mathbb{R} be the closed interval with its Euclidean metric topology.


I +Top */ I_+ \in Top^{\ast/}

is the interval with a disjoint basepoint adjoined, def. 1.

Now for XX any pointed topological space, then the smash product (def. 2)

X(I +)=(X×I)/({x 0}×I) X \wedge (I_+) = (X \times I)/(\{x_0\} \times I)

is the reduced cylinder over XX: the result of forming the ordinary cylinder over XX, and then identifying the interval over the basepoint of XX with the point.

(Generally, any construction in TopTop properly adapted to pointed spaces is called the “reduced” version of the unpointed construction. Notably so for “reduced suspension” which we come to below.)

Just like the ordinary cylinder X×IX\times I receives a canonical injection from the coproduct XXX \sqcup X formed in TopTop, so the reduced cyclinder receives a canonical injection from the coproduct XXX \sqcup X formed in Top */Top^{\ast/}, which is the wedge sum from example 1:

XXX(I +). X \vee X \longrightarrow X \wedge (I_+) \,.

Mapping (co-)cones

Recall that the cone on a topological space XX is the quotient space of the product space with the closed interval

Cone(X)=(X×[0,1])/(X×{0}). Cone(X) = (X \times [0,1])/( X \times \{0\} ) \,.

If XX is pointed with basepoint xXx \in X, then the reduced cone is the further quotient by the copy of the interval over the basepoint

Cone(X,x)=Cone(X)/({x}×[0,1]). Cone(X,x) = Cone(X) / ( \{x\} \times [0,1] ) \,.

For f:XYf \colon X \to Y a continuous function, then

  1. the mapping cylinder of ff is the attachment space

    Cyl(f)Y fCyl(X) Cyl(f) \coloneqq Y \cup_f Cyl(X)
  2. the mapping cone of ff is the attachment space

    Cone(f)Y fCone(X) Cone(f) \coloneqq Y \cup_f Cone(X)

accordingly if f:XYf \colon X \to Y is a continuous function between pointed spaces which preserves the basepoint, then the analogous construction with the reduced cylinder and the reduce cone, respectively, yield the reduced mapping cyclinder and the reduced mapping cone.

We now say this again in terms of pushouts:


For f:XYf \colon X \longrightarrow Y a continuous function between pointed spces, its reduced mapping cone is the space

Cone(f)*XCyl(X)XY Cone(f) \coloneqq \ast \underset{X}{\sqcup} Cyl(X) \underset{X}{\sqcup} Y

in the colimiting diagram

X f Y i 1 i X i 0 Cyl(X) η * Cone(f), \array{ && X &\stackrel{f}{\longrightarrow}& Y \\ && \downarrow^{\mathrlap{i_1}} && \downarrow^{\mathrlap{i}} \\ X &\stackrel{i_0}{\longrightarrow}& Cyl(X) \\ \downarrow && & \searrow^{\mathrlap{\eta}} & \downarrow \\ {*} &\longrightarrow& &\longrightarrow& Cone(f) } \,,

where Cyl(X)Cyl(X) is the reduced cylinder from def. 4.


The colimit appearing in the definition of the reduced mapping cone in def. 3 is equivalent to three consecutive pushouts:

X f Y i 1 (po) i X i 0 Cyl(X) Cyl(f) (po) (po) * Cone(X) Cone(f). \array{ && X &\stackrel{f}{\longrightarrow}& Y \\ && \downarrow^{\mathrlap{i_1}} &(po)& \downarrow^{\mathrlap{i}} \\ X &\stackrel{i_0}{\longrightarrow}& Cyl(X) &\longrightarrow& Cyl(f) \\ \downarrow &(po)& \downarrow & (po) & \downarrow \\ {*} &\longrightarrow& Cone(X) &\longrightarrow& Cone(f) } \,.

The two intermediate objects appearing here are called

  • the plain reduced cone Cone(X)*XCyl(X)Cone(X) \coloneqq \ast \underset{X}{\sqcup} Cyl(X);

  • the reduced mapping cylinder Cyl(f)Cyl(X)XYCyl(f) \coloneqq Cyl(X) \underset{X}{\sqcup} Y.


Let XTop */X \in Top^{\ast/} be any pointed topological space.

The mapping cone, def. 1, of X*X \to \ast is called the reduced suspension of XX, denoted

ΣX=Cone(X*). \Sigma X = Cone(X\to\ast)\,.

Via prop. 1 this is equivalently the coproduct of two copies of the cone on XX over their base:

X * i 1 (po) X i 0 Cyl(X) Cone(X) (po) (po) * Cone(X) ΣX. \array{ && X &\stackrel{}{\longrightarrow}& \ast \\ && \downarrow^{\mathrlap{i_1}} &(po)& \downarrow^{\mathrlap{}} \\ X &\stackrel{i_0}{\longrightarrow}& Cyl(X) &\longrightarrow& Cone(X) \\ \downarrow &(po)& \downarrow & (po) & \downarrow \\ {*} &\longrightarrow& Cone(X) &\longrightarrow& \Sigma X } \,.

This is also equivalently the cofiberf of (i 0,i 1)(i_0,i_1), hence (example 1) of the wedge sum inclusion:

XX=XX(i 0,i 1)Cyl(X)cofib(i 0,i 1)ΣX. X \vee X = X \sqcup X \overset{(i_0,i_1)}{\longrightarrow} Cyl(X) \overset{cofib(i_0,i_1)}{\longrightarrow} \Sigma X \,.

The reduced suspension objects (def. 4) induced from the standard reduced cylinder ()(I +)(-)\wedge (I_+) of example 4 are isomorphic to the smash product (def. 2) with the [[circle] (the 1-sphere)

cofib(XXX(I +))S 1X, cofib(X \vee X \to X \wedge (I_+)) \simeq S^1 \wedge X \,,

For f:XYf \colon X \longrightarrow Y a morphism in Top, then its unreduced mapping cone with respect to the standard cylinder object X×IX \times I def. \ref{TopologicalInterval}, is isomorphic to the reduced mapping cone, of the morphism f +:X +Y +f_+ \colon X_+ \to Y_+ (with a basepoint adjoined) with respect to the standard reduced cylinder:

Cone(f)Cone(f +). Cone'(f) \simeq Cone(f_+) \,.

By example 3, Cone(f +)Cone(f_+) is given by the colimit in TopTop over the following diagram:

* X* (f,id) Y* X* (X×I)* * Cone(f +). \array{ \ast &\longrightarrow& X \sqcup \ast &\overset{(f,id)}{\longrightarrow}& Y \sqcup \ast \\ \downarrow && \downarrow && \downarrow \\ X \sqcup\ast &\longrightarrow& (X \times I) \sqcup \ast \\ \downarrow && && \downarrow \\ \ast &\longrightarrow& &\longrightarrow& Cone(f_+) } \,.

We may factor the vertical maps to give

* X* (f,id) Y* X* (X×I)* ** Cone(f) + * Cone(f). \array{ \ast &\longrightarrow& X \sqcup \ast &\overset{(f,id)}{\longrightarrow}& Y \sqcup \ast \\ \downarrow && \downarrow && \downarrow \\ X \sqcup\ast &\longrightarrow& (X \times I) \sqcup \ast \\ \downarrow && && \downarrow \\ \ast \sqcup \ast &\longrightarrow& &\longrightarrow& Cone'(f)_+ \\ \downarrow && && \downarrow \\ \ast &\longrightarrow& &\longrightarrow& Cone'(f) } \,.

This way the top part of the diagram (using the pasting law to compute the colimit in two stages) is manifestly a cocone under the result of applying () +(-)_+ to the diagram for the unreduced cone. Since () +(-)_+ is itself given by a colimit, it preserves colimits, and hence gives the partial colimit Cone(f) +Cone'(f)_+ as shown. The remaining pushout then contracts the remaining copy of the point away.


Most of the relevant constructions on pointed topological spaces are immediate specializations of the general construction discussed at pointed object.


Revised on May 31, 2017 03:21:54 by Urs Schreiber (