nLab fundamental theorem of dg-algebraic equivariant rational homotopy theory

Redirected from "Matthew J. Strassler".
Contents

Context

Rational homotopy theory

Representation theory

Contents

Idea

The fundamental theorem of equivariant rational homotopy theory modeled by equivariant dgc-algebras.

Preliminaries

Let GG be a finite group.

Write

Definition

(simply connected and finite equivariant rational homotopy types)

Write

(1)Ho(GSimplicialSets Qu) 2 fin AAAHo(GSimplicialSets Qu) Ho \big( G SimplicialSets_{Qu} \big)^{fin_{\mathbb{Q}}}_{\geq 2} \overset{ \phantom{AAA} }{\hookrightarrow} Ho \big( G SimplicialSets_{Qu} \big)

for the full subcategory of the homotopy category of the model structure on equivariant simplicial sets on those equivariant homotopy types XX which over each G/HGOrbitsG/H \in G Orbits are

and

(2)Ho(GSimplicialSets Qu) 2 ,fin AAAHo(SimplicialSets Qu) Ho \big( G SimplicialSets_{Qu} \big)^{\mathbb{Q}, fin_{\mathbb{Q}}}_{\geq 2} \overset{ \phantom{AAA} }{\hookrightarrow} Ho \big( SimplicialSets_{Qu} \big)

for the futher full subcategory on those equivariant homotopy types that are already rational.

Similarly, write

(3)Ho(GdgcAlgebras 0) fin 1AAAHo(GdgcAlgebras 0) Ho \big( G dgcAlgebras^{\geq 0}_{\mathbb{Q}} \big)_{fin}^{\geq 1} \overset{ \phantom{AAA} }{\hookrightarrow} Ho \big( G dgcAlgebras^{\geq 0}_{\mathbb{Q}} \big)

for the full subcategory of the homotopy category of the projective model structure on equivariant connective dgc-algebras on those equivariant dgc-algebras AA which for each G/HGOrbitsG/H \in G Orbits are

  • connected: H 0(A H)H^0(A^H) \simeq \mathbb{Q}

  • simply connected: H 1(A H)0H^1(A^H) \simeq 0

  • finite type: dim (H n(A H))<dim_{\mathbb{Q}}\big( H^n(A^H) \big) \lt \infty for all nn \in \mathbb{N}.

(Scull 08, p. 12, 14)

Statement

Proposition

(fundamental theorem of equivariant dg-algebraic rational homotopy theory)

The derived adjunction

Ho((GdgcAlgebras k 0) proj op)exp𝕃Ω PLdR Ho(GSimplicialSets Qu) Ho \left( \big( G dgcAlgebras^{\geq 0}_{k} \big)^{op}_{proj} \right) \underoverset { \underset {\;\;\; \mathbb{R} exp \;\;\;} {\longrightarrow} } { \overset {\;\;\; \mathbb{L} \Omega^\bullet_{PLdR}\;\;\;} {\longleftarrow} } {\bot} Ho \big( G SimplicialSets_{Qu} \big)

of the Quillen adjunction between equivariant simplicial sets and equivariant connective dgc-algebras (whose left adjoint is the equivariant PL de Rham complex-functor) has the following properties:

  • on connected, simply connected, rationally finite equivariant homotopy types XX (1) the derived adjunction unit is equivariant rationalization

    Ho(GSimplicialSets Qu) 1,nil fin Ho(GSimplicialSets Qu) 1,nil ,fin X expΩ PLdR (X) \array{ Ho \big( G SimplicialSets_{Qu} \big)^{fin_{\mathbb{Q}}}_{\geq 1, nil} & \overset{ }{\longrightarrow} & Ho \big( G SimplicialSets_{Qu} \big)^{\mathbb{Q}, fin_{\mathbb{Q}}}_{\geq 1, nil} \\ X &\mapsto& \mathbb{R}\exp \circ \Omega^\bullet_{PLdR}(X) }
    Xη X derrationalizationexpΩ PLdR (X) X \underoverset {\eta_X^{der}} {rationalization} {\longrightarrow} \mathbb{R}\exp \circ \Omega^\bullet_{PLdR}(X)
  • on the full subcategories of connected, simply connected, and finite rational homotopy types from Def. it restricts to an equivalence of categories:

    Ho((GdgcAlgebras k 0) proj op) fin 1exp𝕃Ω PLdR Ho(GSimplicialSets Qu) 1,nil ,fin Ho \left( \big( G dgcAlgebras^{\geq 0}_{k} \big)^{op}_{proj} \right)^{\geq 1}_{fin} \underoverset { \underset {\;\;\; \mathbb{R} exp \;\;\;} {\longrightarrow} } { \overset {\;\;\; \mathbb{L} \Omega^\bullet_{PLdR}\;\;\;} {\longleftarrow} } {\simeq} Ho \big( G SimplicialSets_{Qu} \big)^{\mathbb{Q}, fin_{\mathbb{Q}}}_{\geq 1, nil}

(Scull 08, Theorem 5.5)

References

Last revised on December 25, 2021 at 20:15:03. See the history of this page for a list of all contributions to it.