nLab generalized contact geometry

Contents

complex geometry

Examples

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

$\array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }$

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Idea

Generalized contact geometry is the odd dimensional analogue of generalized complex geometry. One proposal for an odd dimensional analogue of a generalized complex manifold is called a generalized contact bundle (VitaAis15). This concept encompasses both not necessarily coorientable contact manifolds and line bundles equipped with an integrable complex structure on their Atiyah algebroid.

References

• Luca Vitagliano, Aïssa Wade, Generalized Contact Bundles, (arXiv:1507.03973)

• Jonas Schnitzer, Luca Vitagliano, The Local Structure of Generalized Contact Bundles, (arXiv:1711.08310)

Created on December 11, 2017 at 12:38:19. See the history of this page for a list of all contributions to it.