nLab
zero-set structure
Context
Topology
topology (point-set topology, point-free topology)
see also differential topology, algebraic topology, functional analysis and topological homotopy theory
Introduction
Basic concepts
-
open subset, closed subset, neighbourhood
-
topological space, locale
-
base for the topology, neighbourhood base
-
finer/coarser topology
-
closure, interior, boundary
-
separation, sobriety
-
continuous function, homeomorphism
-
uniformly continuous function
-
embedding
-
open map, closed map
-
sequence, net, sub-net, filter
-
convergence
-
categoryTop
Universal constructions
Extra stuff, structure, properties
-
nice topological space
-
metric space, metric topology, metrisable space
-
Kolmogorov space, Hausdorff space, regular space, normal space
-
sober space
-
compact space, proper map
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
-
compactly generated space
-
second-countable space, first-countable space
-
contractible space, locally contractible space
-
connected space, locally connected space
-
simply-connected space, locally simply-connected space
-
cell complex, CW-complex
-
pointed space
-
topological vector space, Banach space, Hilbert space
-
topological group
-
topological vector bundle, topological K-theory
-
topological manifold
Examples
-
empty space, point space
-
discrete space, codiscrete space
-
Sierpinski space
-
order topology, specialization topology, Scott topology
-
Euclidean space
-
cylinder, cone
-
sphere, ball
-
circle, torus, annulus, Moebius strip
-
polytope, polyhedron
-
projective space (real, complex)
-
classifying space
-
configuration space
-
path, loop
-
mapping spaces: compact-open topology, topology of uniform convergence
-
Zariski topology
-
Cantor space, Mandelbrot space
-
Peano curve
-
line with two origins, long line, Sorgenfrey line
-
K-topology, Dowker space
-
Warsaw circle, Hawaiian earring space
Basic statements
Theorems
Analysis Theorems
topological homotopy theory
Contents
Definition
Given a set , a zero-set structure on is a -topology such that
-
For every pair of distinct points in there is an open set containing precisely one of these points.
-
If then there are for all natural numbers such that .
-
If and , then there are with , , and .
See also
References
-
Fedor Petrov, “countable” topology, MathOverflow (web)
-
Hugh Gordon, Rings of functions determined by zero-sets. Hugh Gordon. Pacific J. Math. Volume 36, Number 1 (1971), 133-157. (pdf)
Created on May 24, 2023 at 21:36:14.
See the history of this page for a list of all contributions to it.