nLab Einstein-Yang-Mills-Dirac-Higgs theory

Contents

Context

Gravity

Differential cohomology

Physics

physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes


theory (physics), model (physics)

experiment, measurement, computable physics

Contents

Idea

The theory in physics which describes the fundamental physics of the observable universe to best present knowledge is a local Lagrangian field theory which combines

theory:Einstein-Maxwell-Yang-Mills-Dirac-Higgs
gravityelectromagnetismelectroweak and strong nuclear forcefermionic matterscalar field
fieldsvielbein field eeU(1)U(1)-principal connection em\nabla_{em}GG-principal connectionspinor ψ\psiscalar field HH
Lagrangian L=L = R(e)vol(e)+R(e) vol(e) + F eF +F_{\nabla_{}} \wedge \star_e F_{\nabla_{}} + (ψ,Dψ)vol(e)+(\psi , D \psi) vol(e) + H¯ eH+(λ|H| 4μ 2|H| 2)vol(e)\nabla \bar H \wedge \star_e \nabla H + \left(\lambda {\vert H\vert}^4 - \mu^2 {\vert H\vert}^2 \right) vol(e)

References

Section Prequantum gauge theory and Gravity in

On Yang-Mills monopoles:

  • K. Lee, V. P. Nair, Erick J. Weinberg, Black Holes in Magnetic Monopoles, Phys. Rev. D45 (1992) 2751-2761 (arXiv:hep-th/9112008)

  • H. W. Braden, V. Varela, Solutions for Einstein-Yang-Mills-Dilaton- σ Models, Phys. Rev. D58:124020, 1998 (arXiv:hep-th/9804204)

  • Betti Hartmann, Burkhard Kleihaus, Jutta Kunz, Axially Symmetric Monopoles and Black Holes in Einstein-Yang-Mills-Higgs Theory, Phys. Rev. D65 (2002) 024027 (arXiv:hep-th/0108129)

Last revised on August 7, 2021 at 20:44:55. See the history of this page for a list of all contributions to it.