nLab Lie-Rinehart pair



\infty-Lie theory

∞-Lie theory (higher geometry)


Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids



Related topics


\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras



The notion of Lie–Rinehart pair is an algebraic encoding of the notion of Lie algebroid. It is the pair consisting of the associative algebra of functions on the base space of the Lie algebroid and of the Lie algebra of its global sections. The anchor map of the Lie algebroid is encoded in the action of the Lie algebra on the associative algebra by derivations and the local structure is encoded in the Lie algebra being a module over the associative algebra.

Since in this formulation the base manifold of the Lie algebroid is entirely described dually in terms of its algebra of functions, and since the definition does not refer to this being a commutative algebra, the notion of Lie-Rinehart pair in fact generalizes the notion of Lie algebroid from ordinary differential geometry to noncommutative geometry.


A Lie–Rinehart-pair (A,𝔤)(A,\mathfrak{g}) is a pair consisting of

  1. an associative algebra AA

  2. a Lie algebra 𝔤\mathfrak{g}

such that

  1. AA is a 𝔤\mathfrak{g}-module

  2. 𝔤\mathfrak{g} is an AA-module

with both module structures being compatible in the obvious way:

  1. 𝔤\mathfrak{g} acts as derivations of AA: that is, we have a Lie algebra homomorphism 𝔤Der(A)\mathfrak{g} \to Der(A).

  2. AA acts as linear transformations of 𝔤\mathfrak{g} in a way obeying the Leibniz rule: that is, we have an associative algebra homomorphism AEnd(𝔤)A \to End(\mathfrak{g}), where End(𝔤)End(\mathfrak{g}) is the algebra of all linear transformations of 𝔤\mathfrak{g}, such that

    [v,aw]=v(a)w+a[v,w]. [v, a w] = v(a) w + a [v,w].


In the case that A=C (X)A = C^\infty(X) is the algebra of smooth functions on a smooth manifold XX, Lie–Rinehart pairs (C (X),𝔤)(C^\infty(X), \mathfrak{g}) are naturally identified with Lie algebroids over XX: given the Lie algebroid in its incarnation as a vector bundle morphism

E ρ TX X \array{ E &&\stackrel{\rho}{\to}&& T X \\ & \searrow && \swarrow \\ && X }

equipped with a bracket

[,]:Γ(E)Γ(E)Γ(E) [-,-] : \Gamma(E) \otimes\Gamma(E) \to \Gamma(E)

we obtain a Lie–Rinehart pair by setting

  • 𝔤=Γ(E)\mathfrak{g} = \Gamma(E) is the Lie algebra of sections of EE using the above bracket

  • the action of AA on 𝔤\mathfrak{g} is the obvious multiplication of sections of vector bundles over XX by functions on XX

  • the action of 𝔤\mathfrak{g} on C (X)C^\infty(X) is given by first applying the anchor map ρ\rho and then using the canonical action of vector fields on functions.

So for all the examples listed at Lie algebroid we obtain an example for Lie–Rinehart pairs.

In particular

In open-closed string field theory one finds at least one half of the axioms of homotopy Lie-Rinehart pairs.


A little bit is known in the literature to generalizations of the notion of Lie–Rinehart algebras that are to Lie ∞-algebroids as the latter are to Lie algebroids.


the analogous algebraic structure for Courant algebroids is discussed. These “2-Lie–Rinehart algebras” are called Courant-Dorfman algebras there.


The original reference:

  • G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222

On the history of this and related concepts:


A notion of universal enveloping algebra of a Lie–Rinehart algebra is discussed in

A connection with BV-theory and L-infinity algebra is made in

  • Lars Kjeseth, Homotopy Rinehart cohomology of homotopy Lie-Rinehart pairs, Homology Homotopy Appl. Volume 3, Number 1 (2001), 139-163. (Euclid)

  • Johannes Huebschmann, Lie–Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras (journal)

Last revised on October 29, 2022 at 10:47:29. See the history of this page for a list of all contributions to it.