nLab A-set

Redirected from "affine set".

Context

Relations

Constructivism, Realizability, Computability

Equality and Equivalence

Foundations

foundations

The basis of it all

 Set theory

set theory

Foundational axioms

foundational axioms

Removing axioms

Contents

Definition

An affine set or antithesis set or 𝒜\mathcal{A}-set is a setoid (A,)(A, \sim) with an irreflexive symmetric relation \nsim such that the equivalence relation satisfies the principle of substitution for the irreflexive symmetric relation in both variables: for all xx, yy, and zz in AA,

(xy)((xz)(yz))and(xy)((zx)(zy))(x \sim y) \to ((x \nsim z) \to (y \nsim z)) \quad \mathrm{and} \quad (x \sim y) \to ((z \nsim x) \to (z \nsim y))

In addition,

  • An 𝒜\mathcal{A}-set is strong if \nsim is an apartness relation.

  • An 𝒜\mathcal{A}-set is affirmative if ¬(xy)\neg (x \sim y) implies xyx \nsim y.

  • An 𝒜\mathcal{A}-set is refutative if ¬(xy)\neg (x \nsim y) implies xyx \sim y.

  • An 𝒜\mathcal{A}-set is stable if it is both affirmative and refutative.

  • An 𝒜\mathcal{A}-set is decidable if xyx \sim y or xyx \nsim y.

Thus, every setoid is an affirmative 𝒜\mathcal{A}-set.

In dependent type theory, an 𝒜\mathcal{A}-set is a univalent 𝒜\mathcal{A}-set if the canonical inductively defined function idtosim(x,y)\mathrm{idtosim}(x, y) from x= Ayx =_A y to xyx \sim y is an equivalence of types for all xx and yy in AA. This means that univalent 𝒜\mathcal{A}-sets are the same as h-sets equipped with an irreflexive symmetric relation, since the principle of substitution is automatically satisfied via transport across the type families ()z(-) \nsim z and z()z \nsim (-) for all zz in AA.

Using the type of affine propositions

An affine proposition PP is interpreted as a pair (P +,P )(P^+, P^-) of propositions in intuitionistic logic which are mutually exclusive in that ¬(P +P )\neg (P^+ \wedge P^-) holds. Thus, we can define the type of affine propositions as the type

Ω ± P +:Ω P :Ω¬(P +P )= Ω\Omega_\pm \coloneqq \sum_{P^+:\Omega} \sum_{P^-:\Omega} \neg (P^+ \wedge P^-) =_\Omega \top

where Ω\Omega is the type of all propositions. We denote the two projection functions of the above type as () +:Ω ±Ω(-)^+:\Omega_\pm \to \Omega and () :Ω ±Ω(-)^-:\Omega_\pm \to \Omega. In addition, we usually suppress the witness that ¬(P +P )\neg (P^+ \wedge P^-) and denote elements of Ω ±\Omega_\pm as pairs (P +,P )(P^+, P^-). The logical operations for the affine logic can be defined on Ω ±\Omega_\pm as demonstrated here. We denote affine truth by 1:Ω ±1:\Omega_\pm and affine falsehood by 0:Ω ±0:\Omega_\pm, to contrast with intuitionistic truth :Ω\top:\Omega and falsehood :Ω\bot:\Omega

An 𝒜\mathcal{A}-set is a type AA with an affine equivalence relation, a function Eq:A×AΩ ±\mathrm{Eq}:A \times A \to \Omega_\pm with witnesses that

  • for all x:Ax:A, Eq(x,x)\mathrm{Eq}(x, x)
refl Eq: x:AEq(x,x)= Ω ±1\mathrm{refl}_\mathrm{Eq}:\prod_{x:A} \mathrm{Eq}(x, x) =_{\Omega_\pm} 1
  • for all x:Ax:A and y:Ay:A, Eq(x,y)\mathrm{Eq}(x, y) implies Eq(y,x)\mathrm{Eq}(y, x)
sym Eq: x:A y:AEq(x,y)Eq(y,x)= Ω ±1\mathrm{sym}_\mathrm{Eq}:\prod_{x:A} \prod_{y:A} \mathrm{Eq}(x, y) \multimap \mathrm{Eq}(y, x) =_{\Omega_\pm} 1
  • for all x:Ax:A, y:Ay:A, and z:Az:A, Eq(x,y)\mathrm{Eq}(x, y) multiplicatively and Eq(y,z)\mathrm{Eq}(y, z) implies Eq(x,z)\mathrm{Eq}(x, z)
trans Eq : x:A y:A z:AEq(x,y)Eq(y,z)Eq(x,z)= Ω ±1\mathrm{trans}_\mathrm{Eq}^{\boxtimes}:\prod_{x:A} \prod_{y:A} \prod_{z:A} \mathrm{Eq}(x, y) \boxtimes \mathrm{Eq}(y, z) \multimap \mathrm{Eq}(x, z) =_{\Omega_\pm} 1

An 𝒜\mathcal{A}-set is

  • strong if for all x:Ax:A, y:Ay:A, and z:Az:A, Eq(x,y)\mathrm{Eq}(x, y) additively and Eq(y,z)\mathrm{Eq}(y, z) implies Eq(x,z)\mathrm{Eq}(x, z)
trans Eq : x:A y:A z:AEq(x,y)Eq(y,z)Eq(x,z)= Ω ±1\mathrm{trans}_\mathrm{Eq}^{\sqcap}:\prod_{x:A} \prod_{y:A} \prod_{z:A} \mathrm{Eq}(x, y) \sqcap \mathrm{Eq}(y, z) \multimap \mathrm{Eq}(x, z) =_{\Omega_\pm} 1
  • affirmative if for all x:Ax:A and y:Ay:A, Eq(x,y)\mathrm{Eq}(x, y) is affirmative
aff Eq: x:A y:AEq(x,y)= Ω ±!Eq(x,y)\mathrm{aff}_\mathrm{Eq}:\prod_{x:A} \prod_{y:A} \mathrm{Eq}(x, y) =_{\Omega_\pm} !\mathrm{Eq}(x, y)
  • refutative if for all x:Ax:A and y:Ay:A, Eq(x,y)\mathrm{Eq}(x, y) is refutative
ref Eq: x:A y:AEq(x,y)= Ω ±?Eq(x,y)\mathrm{ref}_\mathrm{Eq}:\prod_{x:A} \prod_{y:A} \mathrm{Eq}(x, y) =_{\Omega_\pm} ?\mathrm{Eq}(x, y)
  • stable if for all x:Ax:A and y:Ay:A, Eq(x,y)\mathrm{Eq}(x, y) is stable
stab Eq: x:A y:A!Eq(x,y)= Ω ±?Eq(x,y)\mathrm{stab}_\mathrm{Eq}:\prod_{x:A} \prod_{y:A} !\mathrm{Eq}(x, y) =_{\Omega_\pm} ?\mathrm{Eq}(x, y)
  • decidable if for all x:Ax:A and y:Ay:A, Eq(x,y)\mathrm{Eq}(x, y) is decidable
dec Eq: x:A y:AEq(x,y)Eq(x,y) = Ω ±1\mathrm{dec}_\mathrm{Eq}:\prod_{x:A} \prod_{y:A} \mathrm{Eq}(x, y) \sqcup \mathrm{Eq}(x, y)^\bot =_{\Omega_\pm} 1

An 𝒜\mathcal{A}-set is a univalent 𝒜\mathcal{A}-set if the canonical inductively defined function idtoeq +(x,y)\mathrm{idtoeq}^+(x, y) from x= Ayx =_A y to El(Eq(x,y) +)\mathrm{El}(\mathrm{Eq}(x, y)^+) is an equivalence of types for all xx and yy in AA. Univalent 𝒜\mathcal{A}-sets are just h-sets with an irreflexive symmetric relation.

Examples

Every type is an affirmative 𝒜\mathcal{A}-set with the equivalence relation given by the propositional truncation of the identity type and the irreflexive symmetric relation given by the negation of the equivalence relation.

In ring theory

Every nontrivial commutative ring RR is an 𝒜\mathcal{A}-set with the equivalence relation given by equality and the irreflexive symmetric relation given by (yx)(y - x) being an invertible element. In addition,

  • RR is a strong 𝒜\mathcal{A}-set if and only if RR is a local ring,

  • RR is a strong affirmative 𝒜\mathcal{A}-set if and only if RR is a Kock field,

  • RR is a strong refutative 𝒜\mathcal{A}-set if and only if RR is a Heyting field

  • RR is a strong decidable 𝒜\mathcal{A}-set if and only if RR is a discrete field

More generally, let RR be a nontrivial commutative ring and let MM be a multiplicative subset of RR such that 1M-1 \in M and ¬(0M)\neg (0 \in M). Then RR is an 𝒜\mathcal{A}-set with the equivalence relation given by equality and the irreflexive symmetric relation given by (yx)M(y - x) \in M.

References

Last revised on January 15, 2025 at 15:57:45. See the history of this page for a list of all contributions to it.