fundamental solution


Differential geometry

synthetic differential geometry


from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry



smooth space


The magic algebraic facts




tangent cohesion

differential cohesion

graded differential cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& Rh & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }


Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Functional analysis



Given a linear differential operator (ordinary or partial) PP on a domain M nM\subset\mathbb{R}^n or a manifold MM, one can consider both the homogeneous differential equation Pf=0P f = 0 and the nonhomogeneous equation of the form Pf=gP f = g where gg is a given nonhomogeneous term. If gg is a delta distribution and the boundary conditions are given, then the generalized solution of the nonhomogenous equation

Pf=δ P f = \delta

is called the fundamental solution for PP; alternative names like Green function and function of influence are also used. A particular solution of the nonhomogeneous equation for some other gg can be obtained by calculating the convolution with the fundamental solution. (Compare the fact that the delta distribution is the identity element for convolution.)


Propagators for free fields

The Green functions for the wave operator/Klein-Gordon operator are known as the propagators for free fields in field theory:

Green functions for the Klein-Gordon operator on a globally hyperbolic spacetime:

propagatorAA\phantom{AA}AA\phantom{AA} primed wave front seton Minkowski spacetimegenerally
causal propagatorΔΔ RΔ A\array{\Delta \coloneqq \Delta_R - \Delta_A } A a\array{- \\ \phantom{A} \\ \phantom{a}} Δ S(x,y)= vac|[Φ(x),Φ(y)]|vac\array{\Delta_S(x,y) = \\ \langle vac\vert [\Phi(x),\Phi(y)] \vert vac\rangle }Peierls-Poisson bracket
advanced propagatorΔ A\Delta_AΔ A(x,y)= Θ((yx) 0)vac|[Φ(x),Φ(y)]|vac\array{\Delta_A(x,y) = \\ \Theta((y-x)^0)\langle vac\vert [\Phi(x),\Phi(y)] \vert vac\rangle }
retarded propagatorΔ R\Delta_RΔ R(x,y)= Θ((xy) 0)vac|[Φ(x),Φ(y)]|vac\array{\Delta_R(x,y) = \\ \Theta((x-y)^0)\langle vac\vert [\Phi(x),\Phi(y)] \vert vac\rangle }
Dirac propagatorΔ D=12(Δ A+Δ R)\Delta_D = \tfrac{1}{2}(\Delta_A + \Delta_R) + A a\array{+ \\ \phantom{A} \\ \phantom{a}}
Hadamard propagatorω =i2Δ+H =ω FiΔ A\begin{aligned} \omega &= \tfrac{i}{2}\Delta + H \\ & = \omega_F - i \Delta_A \end{aligned}ω(x,y)= vac|Φ(x)Φ(y)|vac\array{\omega(x,y) = \\ \langle vac \vert \Phi(x) \Phi(y) \vert vac \rangle }normal-ordered product (2-point function of quasi-free state)
Feynman propagatorω F =iΔ D+H =ω+iΔ A\array{\omega_F & = i \Delta_D + H \\ & = \omega + i \Delta_A}E F(x,y)= vac|T(Φ(x)Φ(y))|vac\array{E_F(x,y) = \\ \langle vac \vert T(\Phi(x)\Phi(y)) \vert vac \rangle }time-ordered product

(see also Kocic’s overview: pdf)


Revised on November 9, 2017 12:40:54 by Urs Schreiber (