nLab Einstein-Yang-Mills-Dirac theory

Redirected from "Einstein-Yang-Mills-Dirac theories".
Contents

Context

Gravity

Differential cohomology

Physics

physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes


theory (physics), model (physics)

experiment, measurement, computable physics

Contents

Idea

What is called Einstein-Yang-Mills-Dirac theory in physics is the theory/model (in theoretical physics) describing gravity together with Yang-Mills fields and coupled to fermionic matter.

Einstein-Yang-Mills-Dirac theory is a local Lagrangian field theory defined by the action functional which is the Einstein-Hilbert action plus the Yang-Mills action functional involving the given metric,

S G+YM:(e,,ψ) XR(e)vol(e)+ XF eF + X(ψ,D e,ψ), S_{G+YM} \; \colon \; (e, \nabla, \psi) \mapsto \int_{X} R(e) vol(e) + \int_X \langle F_\nabla \wedge \star_e F_\nabla\rangle + \int_X (\psi, D_{e,\nabla} \psi) \,,

where

standard model of particle physics and cosmology

theory:Einstein-Yang-Mills-Dirac-Higgs
gravityelectroweak and strong nuclear forcefermionic matterscalar field
field content:vielbein field eeprincipal connection \nablaspinor ψ\psiscalar field HH
Lagrangian:scalar curvature densityfield strength squaredDirac operator component densityfield strength squared + potential density
L=L = R(e)vol(e)+R(e) vol(e) + F eF +\langle F_\nabla \wedge \star_e F_\nabla\rangle + (ψ,D (e,)ψ)vol(e)+ (\psi , D_{(e,\nabla)} \psi) vol(e) + H¯ eH+(λ|H| 4μ 2|H| 2)vol(e) \nabla \bar H \wedge \star_e \nabla H + \left(\lambda {\vert H\vert}^4 - \mu^2 {\vert H\vert}^2 \right) vol(e)

References

  • Gerd Rudolph, Torsten Tok, Igor P. Volobuev, Exact solutions in Einstein-Yang-Mills-Dirac systems, J.Math.Phys. 40 (1999) 5890-5904 (arXiv:gr-qc/9707060)

Section Prequantum gauge theory and Gravity in

Last revised on March 19, 2014 at 04:06:18. See the history of this page for a list of all contributions to it.