nLab Tychonoff space

Tychonoff spaces



topology (point-set topology, point-free topology)

see also differential topology, algebraic topology, functional analysis and topological homotopy theory


Basic concepts

Universal constructions

Extra stuff, structure, properties


Basic statements


Analysis Theorems

topological homotopy theory

Tychonoff spaces


A Tychonoff space is a subspace of a compactum. By default, one usually means a Tychonoff topological space, although there exist (even classically) additional Tychonoff locales.


The classical definition is:


A topological space XX is completely regular if, given a point aa of XX and a closed subset FF of XX, if aFa \notin F, then there is a continuous map ff from XX to the real line \mathbb{R} such that ff is constant when restricted to FF but takes a different value at aa.

(Traditionally, one requires f(a)=0f(a) = 0 and f(F)={1}f(F) = \{1\}, but this can always be forced by postcomposition with an affine linear map. One sometimes sees, even more specifically, the requirement that ff land in the unit interval [0,1][0,1], but this too can be forced since [0,1][0,1] is a retract of \mathbb{R}.)

An equivalent definition focussing on open sets is this:


A topological space XX is completely regular if, given a point aa of XX and an open neighbourhood UU of aa in XX, there is a continuous f:Xf\colon X \to \mathbb{R} and a real number cc such that af *({c})Ua \in f^*(\{c\}') \subseteq U.

(Here f *({c})f^*(\{c\}') is the preimage under ff of the complement of the singleton of cc. Again, one can force c=1c = 1, f(a)=0f(a) = 0, and even f:X[0,1]f\colon X \to [0,1] if desired.) This definition is suitable for constructive mathematics based on weak countable choice, Markov's principle, and the fan theorem (all of which follow from excluded middle), or in any case if the following interpretations are made:

There is also a definition entirely in terms of the lattice of open sets, suitable for locales, which I need to look up again. (It's similar to the localic definition of regular space, but using a stronger notion than well-inside.)

When a space is completely regular, we also often ask it to be T 0T_0:


(of T 0T_0) Given any two points, if each neighbourhood of either is a neighbourhood of the other, then they are equal.

A completely regular T 0T_0-space is variously called a T 312T_{3\frac{1}{2}}-space (or T πT_{\pi}-space), a completely regular Hausdorff space (since it is a theorem that such a space is Hausdorff), or a Tychonoff space (or using other spellings of Tychonoff's name).

As is usual with the separation axioms, some authors while conflate the meanings of ‘completely regular’ and ‘T 312T_{3\frac{1}{2}}’ either way, or even reverse them. In contrast, the terms ‘completely regular Hausdorff’ and ‘Tychonoff’ are unambiguous. The only unambiguous term for a completely regular space in general seems to be ‘R 212R_{2\frac{1}{2}}’, but this is not widely recognised.



  • Every metric space is Tychonoff (and every pseudometric space is completely regular).

  • Every topological group is Tychonoff, if one requires groups to be Hausdorff; if not, then they are still completely regular.

  • Every topological manifold is Tychonoff, if one requires manifolds to be Hausdorff. (But if not, then the non-Hausdorff manifolds are not completely regular, indeed not even preregular, and in fact they are still T 0T_0, indeed T 1T_1.)

  • Every CW-complex is Tychonoff.


Named after A. N. Tychonoff.

For a version appropriate to constructive (but impredicative) mathematics, see

  • Bernhard Banaschewski, Aleš Pultr; 2002; A Constructive View of Complete Regularity; web.

Last revised on April 19, 2017 at 14:58:49. See the history of this page for a list of all contributions to it.