nLab
de Sitter group
Contents
Context
Riemannian geometry
Group Theory
group theory
Classical groups
Finite groups
Group schemes
Topological groups
Lie groups
Super-Lie groups
Higher groups
Cohomology and Extensions
Related concepts
Contents
Idea
The de Sitter group is the isometry group of de Sitter spacetime . In spacetime dimension D = d + 1 D = d+1 its connected component is isomorphic to the orthogonal group SO ( D , 1 ) SO(D,1) in Lorentzian signature in one dimension higher.
This is analgous to the Poincaré group , which instead is the isometry group of Minkowski spacetime .
geometric contextgauge group stabilizer subgroup local model space local geometry global geometry differential cohomology first order formulation of gravity differential geometry Lie group /algebraic group G G subgroup (monomorphism ) H ↪ G H \hookrightarrow G quotient (“coset space ”) G / H G/H Klein geometry Cartan geometry Cartan connection
examples Euclidean group Iso ( d ) Iso(d) rotation group O ( d ) O(d) Cartesian space ℝ d \mathbb{R}^d Euclidean geometry Riemannian geometry affine connection Euclidean gravity
Poincaré group Iso ( d − 1 , 1 ) Iso(d-1,1) Lorentz group O ( d − 1 , 1 ) O(d-1,1) Minkowski spacetime ℝ d − 1 , 1 \mathbb{R}^{d-1,1} Lorentzian geometry pseudo-Riemannian geometry spin connection Einstein gravity
anti de Sitter group O ( d − 1 , 2 ) O(d-1,2) O ( d − 1 , 1 ) O(d-1,1) anti de Sitter spacetime AdS d AdS^d AdS gravity
de Sitter group O ( d , 1 ) O(d,1) O ( d − 1 , 1 ) O(d-1,1) de Sitter spacetime dS d dS^d deSitter gravity
linear algebraic group parabolic subgroup /Borel subgroup flag variety parabolic geometry
conformal group O ( d , t + 1 ) O(d,t+1) conformal parabolic subgroup Möbius space S d , t S^{d,t} conformal geometry conformal connection conformal gravity
supergeometry super Lie group G G subgroup (monomorphism ) H ↪ G H \hookrightarrow G quotient (“coset space ”) G / H G/H super Klein geometry super Cartan geometry Cartan superconnection
examples super Poincaré group spin group super Minkowski spacetime ℝ d − 1 , 1 | N \mathbb{R}^{d-1,1\vert N} Lorentzian supergeometry supergeometry superconnection supergravity
super anti de Sitter group super anti de Sitter spacetime
higher differential geometry smooth 2-group G G 2-monomorphism H → G H \to G homotopy quotient G / / H G//H Klein 2-geometry Cartan 2-geometry
cohesive ∞-group ∞-monomorphism (i.e. any homomorphism ) H → G H \to G homotopy quotient G / / H G//H of ∞-action higher Klein geometry higher Cartan geometry higher Cartan connection
examples extended super Minkowski spacetime extended supergeometry higher supergravity : type II , heterotic , 11d
References
The de Sitter Lie algebra is discussed for instance in
On the representation theory of the de Sitter group and its Inönü-Wigner contraction to that of the Poincaré group :
Jouko Mickelsson , J. Niederle, Contractions of Representations of de Sitter Groups , Comm. Math. Phys. Volume 27, Number 3 (1972), 167-180. (Euclid )
Mauricio Ayala, Richard Haase, Group contractions and its consequences upon representations of different spatial symmetry groups (arXiv:hep-th/0206037 )
Francisco J. Herranz, Mariano Santander, section 4 of (Anti)de Sitter/Poincare symmetries and representations from Poincare/Galilei through a classical deformation approach , J.Phys.A41:015204,2008 (arXiv:math-ph/0612059 )
Thomas Basile, Xavier Bekaert , Nicolas Boulanger, Mixed-symmetry fields in de Sitter space: a group theoretical glance (arXiv:1612.08166 )
Zimo Sun, A note on the representations of SO ( 1 , d + 1 ) SO(1,d+1) (arXiv:2111.04591 )
Vladimir Schaub, A Walk Through Spin ( 1 , d + 1 ) Spin(1,d+1) [arXiv:2405.01659 ]
Last revised on May 6, 2024 at 08:39:41.
See the history of this page for a list of all contributions to it.