nLab super Klein geometry

Contents

Context

Geometry

Differential geometry

synthetic differential geometry

Introductions

from point-set topology to differentiable manifolds

geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry

Differentials

V-manifolds

smooth space

Tangency

The magic algebraic facts

Theorems

Axiomatics

cohesion

tangent cohesion

differential cohesion

graded differential cohesion

singular cohesion

id id fermionic bosonic bosonic Rh rheonomic reduced infinitesimal infinitesimal & étale cohesive ʃ discrete discrete continuous * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \mathrm{R}\!\!\mathrm{h} & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{cohesive}{}& \esh &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{continuous}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }

Models

Lie theory, ∞-Lie theory

differential equations, variational calculus

Chern-Weil theory, ∞-Chern-Weil theory

Cartan geometry (super, higher)

Contents

Idea

The notion of super Klein geometry is essentially that of homogeneous space (coset space) G/HG/H in the context of supergeometry. It is the supergeometric counterpart of Klein geometry.

Super Klein geometries form the local models for super Cartan geometries.

Examples

ddsuper anti de Sitter spacetime
4OSp(8|4)Spin(3,1)×SO(7)\;\;\;\;\frac{OSp(8\vert 4)}{Spin(3,1) \times SO(7)}\;\;\;\;
5SU(2,2|5)Spin(4,1)×SO(5)\;\;\;\;\frac{SU(2,2\vert 5)}{Spin(4,1)\times SO(5)}\;\;\;\;
7OSp(6,2|4)Spin(6,1)×SO(4)\;\;\;\;\frac{OSp(6,2\vert 4)}{Spin(6,1) \times SO(4)}\;\;\;\;
  • The supersphere S 2|2S^{2|2} is the super coset space UOSp(1|2)/U(1)UOSp(1|2)/U(1).

  • The supersphere S r1|2sS^{r-1|2s} is the super coset space OSp(r|2s)/OSp(r1|2s)OSp(r|2s)/OSp(r-1|2s) of orthosymplectic groups (GJS 18).

geometric contextgauge groupstabilizer subgrouplocal model spacelocal geometryglobal geometrydifferential cohomologyfirst order formulation of gravity
differential geometryLie group/algebraic group GGsubgroup (monomorphism) HGH \hookrightarrow Gquotient (“coset space”) G/HG/HKlein geometryCartan geometryCartan connection
examplesEuclidean group Iso(d)Iso(d)rotation group O(d)O(d)Cartesian space d\mathbb{R}^dEuclidean geometryRiemannian geometryaffine connectionEuclidean gravity
Poincaré group Iso(d1,1)Iso(d-1,1)Lorentz group O(d1,1)O(d-1,1)Minkowski spacetime d1,1\mathbb{R}^{d-1,1}Lorentzian geometrypseudo-Riemannian geometryspin connectionEinstein gravity
anti de Sitter group O(d1,2)O(d-1,2)O(d1,1)O(d-1,1)anti de Sitter spacetime AdS dAdS^dAdS gravity
de Sitter group O(d,1)O(d,1)O(d1,1)O(d-1,1)de Sitter spacetime dS ddS^ddeSitter gravity
linear algebraic groupparabolic subgroup/Borel subgroupflag varietyparabolic geometry
conformal group O(d,t+1)O(d,t+1)conformal parabolic subgroupMöbius space S d,tS^{d,t}conformal geometryconformal connectionconformal gravity
supergeometrysuper Lie group GGsubgroup (monomorphism) HGH \hookrightarrow Gquotient (“coset space”) G/HG/Hsuper Klein geometrysuper Cartan geometryCartan superconnection
examplessuper Poincaré groupspin groupsuper Minkowski spacetime d1,1|N\mathbb{R}^{d-1,1\vert N}Lorentzian supergeometrysupergeometrysuperconnectionsupergravity
super anti de Sitter groupsuper anti de Sitter spacetime
higher differential geometrysmooth 2-group GG2-monomorphism HGH \to Ghomotopy quotient G//HG//HKlein 2-geometryCartan 2-geometry
cohesive ∞-group∞-monomorphism (i.e. any homomorphism) HGH \to Ghomotopy quotient G//HG//H of ∞-actionhigher Klein geometryhigher Cartan geometryhigher Cartan connection
examplesextended super Minkowski spacetimeextended supergeometryhigher supergravity: type II, heterotic, 11d

References

  • A. F. Kleppe, Chris Wainwright, Super coset space geometry, (arXiv:hep-th/0610039)

  • A. F. Schunck, Chris Wainwright, A geometric approach to scalar field theories on the supersphere, (arXiv:hep-th/0409257)

  • Constantin Candu, Vladimir Mitev, Volker Schomerus, Spectra of Coset Sigma Models, (arXiv:1308.5981)

  • Etienne Granet, Jesper Lykke Jacobsen, Hubert Saleur, Spontaneous symmetry breaking in 2D supersphere sigma models and applications to intersecting loop soups, (arXiv:1810.07807)

Last revised on April 30, 2019 at 09:43:16. See the history of this page for a list of all contributions to it.