disjunctive logic


Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism = propositions as types +programs as proofs +relation type theory/category theory

logiccategory theorytype theory
trueterminal object/(-2)-truncated objecth-level 0-type/unit type

falseinitial objectempty type

proposition(-1)-truncated objecth-proposition, mere proposition

proofgeneralized elementprogram

cut rulecomposition of classifying morphisms / pullback of display mapssubstitution

cut elimination for implicationcounit for hom-tensor adjunctionbeta reduction

introduction rule for implicationunit for hom-tensor adjunctioneta conversion

logical conjunctionproductproduct type

disjunctioncoproduct ((-1)-truncation of)sum type (bracket type of)

implicationinternal homfunction type

negationinternal hom into initial objectfunction type into empty type

universal quantificationdependent productdependent product type

existential quantificationdependent sum ((-1)-truncation of)dependent sum type (bracket type of)

equivalencepath space objectidentity type

equivalence classquotientquotient type

inductioncolimitinductive type, W-type, M-type

higher inductionhigher colimithigher inductive type

completely presented setdiscrete object/0-truncated objecth-level 2-type/preset/h-set

setinternal 0-groupoidBishop set/setoid

universeobject classifiertype of types

modalityclosure operator, (idemponent) monadmodal type theory, monad (in computer science)

linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation

proof netstring diagramquantum circuit

(absence of) contraction rule(absence of) diagonalno-cloning theorem

synthetic mathematicsdomain specific embedded programming language


homotopy levels



Disjunctive logic is the internal logic of lextensive categories.



The (coherent) theory of (geometric) fields is obtained from the axioms for the algebraic theory of commutative unital rings by adding the sequents

(0=1) (nontriviality) and x((x=0)((y)(xy=1))).(0=1)\vdash \bot\,\text{ (nontriviality) and }\,\top \vdash_x ((x=0) \vee ((\exists y)(xy=1)))\quad.

Since inverse elements in a commutative ring are unique when they exist the second sequent involves a legitimate existential quantification plus a legitimate disjunction (due to the nontriviality) whence the resulting theory is (finitary) disjunctive.



The main reference on disjunctive logic is Johnstone (1979) which was inspired by a non-syntactic concept of Yves Diers?. The elephant has some additional cursory remarks. Freyd (2002) gives disjunctive logic a short treatment under the name ‘alternating logic’ and discusses the theory of real closed fields as an example. Barr and Wells (1985) discuss the corresponding class of sketches without mentioning the syntactic side.

Last revised on June 8, 2017 at 06:22:03. See the history of this page for a list of all contributions to it.